MATHEMATICS 249 L07 MIDTERM November 14, 2007
SHOW ALL WORK. Marks for each problem are to the left of the problem number. NO CALCULATORS PLEASE.
[5] 1. Find $\lim _{x \rightarrow 1}\left(\frac{\sqrt{5-x}-2}{2-2 x}\right)$. (If it is possible to give the answer ∞ or $-\infty$, do so.)
[5] 2. USE THE LIMIT DEFINITION OF DERIVATIVE to find $\frac{d}{d x}\left(\frac{8}{6-x}\right)$.
[5] 3. Find y^{\prime} where $y=\ln \left(\frac{x^{2}}{x^{4}-4}\right)$.
[6] 4. Use implicit differentiation to find y^{\prime} where $e^{y}+e^{2 x}=8-x \cos y$.
[5] 5. Find $\frac{d}{d x}\left(x^{1 / 3} \sin ^{2} x\right)$.
[6] 6. Find and simplify the equation of the tangent line to the curve $y=x \sqrt{2 x-5}$ at the point on the curve where $x=3$.
[8] 7. Do ONE of the following two problems.
(a) A woman 1.5 metres tall walks away from a 4.5 -metre lamppost. The length s of her shadow cast by the lamp is increasing by 0.6 metres per second. Find the rate at which she is walking.

(b) For the function $f(x)=x^{3}+6 x^{2}-15 x+8$, you are given that $f^{\prime}(x)=3 x^{2}+12 x-15$. Find (i) the critical points, (ii) the intervals of increase and decrease, (iii) the local maxima and local minima.

NAME \qquad
MATHEMATICS 249 L08 MIDTERM November 15, 2007
SHOW ALL WORK. Marks for each problem are to the left of the problem number. NO CALCULATORS PLEASE.
[5] 1. Find $\lim _{x \rightarrow-2}\left(\frac{4-x^{2}}{3 x^{2}+x-10}\right)$. (If it is possible to give the answer ∞ or $-\infty$, do so.)
[5] 2. USE THE LIMIT DEFINITION OF DERIVATIVE to find $\frac{d}{d x}(\sqrt{6-x})$.
[5] 3. Find y^{\prime} where $y=\frac{x-\sqrt{x}}{\sin x}$.
[6] 4. Use implicit differentiation to find y^{\prime} where $\cos (x+y)=5 \ln x-3 y^{5}$.
[5] 5. Find $\frac{d}{d x}\left(e^{4 x} \tan x\right)$.
[6] 6. Find and simplify the equation of the tangent line to the curve $y=\frac{x^{3 / 2}}{x-3}$ at the point on the curve where $x=4$.
[8] 7. Do ONE of the following two problems.
(a) Sonya and Isaac are standing together on the snow in the centre of a frozen lake. At noon Isaac begins snowshoeing north at a speed of $2 \mathrm{~km} /$ hour. At 1:00 PM Sonya begins cross-country skiing west at a speed of $8 \mathrm{~km} /$ hour. At what rate is the distance between them increasing at 1:30 PM?
(b) For the function $f(x)=2 x^{3}+x^{2}-4 x-1$, find (i) the critical points, (ii) the absolute maximum and absolute minimum of $f(x)$ for x in the interval $[-2,0]$.

