Math 249, Winter 2004 Worksheet

1. Solve the following inequalities

(a)
$$\frac{2}{5-x} \ge \frac{4}{x}$$

(b)
$$(x-4)(x+4) > 0$$

2. Find the domain and the range of

(a)
$$f(x) = \frac{x+2}{x-1}$$

3. Find the domain of

$$f(x) = \sqrt{\frac{2}{x^2 + 3}}$$

4. Graph the function $\sin(\frac{1}{4}x) + 1$

5. Find the following limits

(a)
$$\lim_{x \to \infty} \sqrt[3]{\frac{5x+4}{2x-4}}$$

(b)
$$\lim_{x \to 0^+} \frac{\sin 3x}{1 - \cos 6x}$$

(c)
$$\lim_{h \to 0} \frac{\tan 4h}{\sin 8h}$$

(d)
$$\lim_{x \to 1^{-}} \frac{2x^2 + 3x + 1}{|2x^2 + 3x + 1|}$$

6. Let $f(x) = \begin{cases} -x^4 + 3 & if & x \leq 2 \\ x^2 + 9 & if & x > 2 \end{cases}$. Is f continuous everywhere? Justify your conclusion.

7. Use intermediate value Theorem to show that the equation $x^3 - 4x + 2 = 0$ has a solution on the interval [1, 2].

1

8. Find the points of discontinuity if any of the following functions

(a)
$$y = \frac{x-4}{x^2-16}$$

(b)
$$y = \frac{\sin \theta}{\theta}$$

(c)
$$y = \sqrt[3]{3x - 1}$$

9. Find $\frac{dy}{dx}$ of the following

(a)
$$\frac{1}{y} + \frac{1}{2x} = 1$$

(b)
$$y = (\sin(x^2))^{-\frac{1}{2}}$$

(c)
$$y = \tan(1 + \sin(x^3))$$

(d)
$$\sin(x^3y^3) = x^2 + x$$

10. Two cyclists start moving form the same point. One travels south at 50km/h and the other travels west at 30km/h. At what rate is the distance between the two cyclists increasing two hours later?

Solutions

1. **a.**
$$(-\infty, 0) \cup \left[\frac{10}{3}, 5\right)$$
 b $(-\infty, -4) \cup (4, \infty)$

- 2. Domain $\{x \mid x \neq 1\}$, Range $\{y \mid y \neq 1\}$
- 3. $(-\infty, \infty)$
- 4.
- 5. **a.** $\sqrt[3]{\frac{5}{2}}$ **b.** ∞ **c.** $\frac{1}{2}$ **d**. 1
- 6. No continuous
- 7.

- 8. **a.** x = -4, 4 **b.** $\theta = 0,$ **c.** No points of discontinuity.

9. **a.**
$$\frac{dy}{dx} = -\frac{y}{2x^2}$$

9. **a.**
$$\frac{dy}{dx} = -\frac{y}{2x^2}$$
 b. $\frac{dy}{dx} = -x(\sin x^2)^{-\frac{3}{2}}\cos(x^2)$.

$$\mathbf{c} \cdot \frac{dy}{dx} = \sec^2\left(1 + \sin(x^3)\right) \left(\cos\left(x^3\right)\right) (3x^2)$$

d.
$$\frac{dy}{dx} = \frac{2x + 1 - 3\cos(x^3y^3)x^2y^3}{3x^3y^2\cos(x^3y^3)}$$

10.
$$\frac{6800}{\sqrt{13600}} km/h$$
.