Math 249, Winter 2004 PRACTICE PROBLEMS

- 1. Express the function f(x) in piecewise form with out using absolute values f(x) = 3|x-2| |x+1|
- 2. Find or simplify $\frac{f(x+h)-f(x)}{h}$ where $h \neq 0$ and $f(x)=4x^2-5x+7$.
- 3. Find the domain and the range of the function g(x).

(a)
$$g(x) = \sqrt{x^2 - x - 2}$$

4. Find the value of the constant k, if possible, that will make the function continuous every where.

$$f(x) = \begin{cases} kx^2 & x \le 2\\ 2x + k & x > 2 \end{cases}$$

- 5. State the following Theorems:
 - (a) Intermediate-Value Theorem
 - (b) Mean-Value Theorem
 - (c) Fundamental Theorem of Calculus.
- 6. What is the definition of the derivative?
- 7. Show that $f(x) = 5 x x^2$ has at least one solution on the interval [-4,0].
- 8. Find the following limits

(a)
$$\lim_{x \to \infty} \frac{3x+4}{\sqrt{2x^2-5}}$$

(b)
$$\lim_{x\to 0} \frac{3x^2}{1-\cos^2(\frac{1}{2}x)}$$

(c)
$$\lim_{h \to \frac{\pi}{2}} \frac{1 - \sin h}{\frac{1}{2}\pi - h}$$
 (Hint use $t = \frac{\pi}{2} - h$)

9. Find $\frac{dy}{dx}$ by implicit differentiation.

$$x\sin y + y\cos x = 1$$

10. Find $\frac{dy}{dx}$ for the following:

(a)
$$y = \sqrt{3}^{x \sin x}$$

(b)
$$y = (\tan x)^{\ln x}$$

- 11. At which points of the curve $xy = (1 x y)^2$ the tangent line is parallel to the x-axis?
- 12. Use local linear approximation to estimate cos(46°).
- 13. Solve for x the following equation $\ln\left(\frac{1}{x^2}\right) + \ln\left(4x^6\right) = \ln 4$
- 14. Find the critical points of the function $f(x) = x^3 3x^2 + 3$ and determine if they are maximum, minimum or none.
- 15. Find the intervals where the function $f(x) = xe^{2x}$ is increasing and decreasing.
- 16. Find the intervals where the function $f(x) = x^2 \ln x$ is concave up and concave down and determine the inflection points.
- 17. A rancher has 200feet of fencing with which he wants to enclose two adjacent regular corrals. What dimensions should be used so that the enclose area will be a maximum?
- 18. Solve the following integrals:
 - (a) $\int \sin(2x)\cos(2x)dx$
 - (b) $\int \frac{\csc^2 x}{\cot^3 x} dx$
 - (c) $\int_{\pi/2}^{2\pi/3} \sec^2\left(\frac{x}{2}\right) dx$
 - (d) $\int_1^3 \frac{e^{\frac{3}{x}}}{x^2} dx$
 - (e) $\frac{d}{dx} \int_x^0 \frac{t}{\cos t} dt$

Solutions

- 1. $f(x) = \begin{cases} -2x 7 & \text{if } x < -1 \\ -4x + 7 & \text{if } -1 \le x < 2 \\ 2x 7 & \text{if } x \ge 2 \end{cases}$
- 2. 8x + 4h 5
- 3. Domain $(-\infty, -1] \cup [2, \infty)$ Range $y \ge 0$.
- 4. k = 4/3
- 5.
- 6.
- 7.
- 8. (a) $\frac{3}{\sqrt{2}}$

- (b) 12
- (c) 0

$$9. \ \frac{dy}{dx} = \frac{y\sin x - \sin y}{x\cos y + \cos x}$$

10. (a)
$$\frac{dy}{dx} = \left(\ln\sqrt{3}\left[\sin x + x\cos x\right]\right)\ln\sqrt{3}^{x\sin x}$$

(b)
$$\frac{dy}{dx} = \left(\frac{\ln(\tan x)}{x} + \frac{\ln x}{\tan x} \sec^2 x\right) \ln(\tan x)^{\ln x}$$

- 11. y = 2 2x
- 12. $\cos(46^{\circ}) \approx 1/\sqrt{2} \left(1 \frac{\pi}{180}\right)$.
- 13. $x = \pm 1$
- 14. 0 is a maximum and 2 is a minimum.
- 15. f(x) is increasing on $\left(-\frac{1}{2},\infty\right)$ and decreasing on $\left(-\infty,-\frac{1}{2}\right)$
- 16. f(x) is concave up on $\left(e^{-\frac{3}{2}},\infty\right)$ and concave down on $\left(-\infty,e^{-\frac{3}{2}}\right)$. $x=e^{-\frac{3}{2}}$ is an inflection point.
- 17. Dimensions: 50feet by 100/3feet.

18. (a)
$$\frac{\sin^2(2x)}{4} + c$$

(b)
$$\frac{1}{\cot^2 x} + c$$

(c)
$$2\sqrt{3}-2$$

(d)
$$-\frac{1}{3}(e+e^3)$$

(e)
$$-\frac{x}{\cos x}$$