- 1. Find $\lim_{x\to 2} \left(\frac{x^3-8}{x-2}\right)$.
 - (A) 12
 - (B) 4
 - $(C) \infty$
 - (D) does not exist
 - (E) 8
- 2. Find $\lim_{t\to 0} \left(\frac{\sqrt{t^2+4}-2}{t}\right)$.
 - (A) -1
 - (B) does not exist
 - (C) 1
 - (D) 2
 - (E) 0
- 3. Find $\lim_{x \to \infty} (\sqrt{x^2 + 3x} \sqrt{x^2 3x})$.
 - $(A) \infty$
 - (B) -3
 - (C) $-2\sqrt{3}$
 - (D) 3
 - (E) $2\sqrt{3}$
- 4. Find $\lim_{x \to \infty} \frac{5x^2 2x 3}{(2x+3)(3x+2)}$.
 - (A) -1/2
 - (B) ∞
 - $(C) -\infty$
 - (D) 5/6
 - (E) 5/13
- 5. Find $\lim_{x \to -\infty} \left(\frac{3x+7}{\sqrt{4x^2+5}} \right)$.
 - (A) $7/\sqrt{5}$
 - (B) $-3/\sqrt{5}$
 - (C) 0
 - (D) 3/2
 - (E) -3/2

6. The derivative of $4x^3 + 3x^2 + 2x + 1$ is

- (A) $x^4 + x^3 + x^2 + x$
- (B) $4x^2 + 3x + 2$
- (C) $(x^5-1)/(x-1)$
- (D) $x^4 + x^3 + x^2 + x + C$
- (E) $12x^2 + 6x + 2$

7. The derivative of $\frac{x^2}{x^4+1}$ is

- (A) $\frac{1}{2x^2}$
- (B) $\frac{6x^5 + 2x}{(x^4 + 1)^2}$
- (C) $\frac{2x^5 2x}{(x^4 + 1)^2}$
- (D) $\frac{2x-4x^3}{(x^4+1)}$
- (E) $\frac{2x-2x^5}{(x^4+1)^2}$

8. The derivative of $x^2 \tan(3x)$ is

- (A) $2x \tan(3x) + 3x^2 \tan(3x) \sec(3x)$
- (B) $6x \sec^2(3x)$
- (C) $x^2 \cot(3x)$
- (D) $2x \tan(3x) + 3x^2 \sec^2(3x)$
- (E) $6x \tan(3x)$

9. The derivative of $ln(x^3)$ is

- (A) 3/x
- (B) $x/\ln(x)$
- (C) $3x^2 \ln(x^3)$
- (D) $3x^2/\ln(x^3)$
- (E) $3x^2/\ln(x)$

10. The derivative of $y = x^{\cos(x)}$ is

- (A) $(\cos(x)/x \sin(x)\ln(x))x^{\cos(x)}$
- (B) $e^x x^{\cos(x)}$
- (C) $\ln(x)x^{\cos(x)}$
- $(D) \sin(x) x^{\cos(x)-1}$
- (E) $(\sin(x)/x \ln(x))x^{\cos(x)}$

11. The antiderivative $\int \frac{1}{x^2} + x^2 dx$ is

(A)
$$\ln(x^2)/2x + x^3/3 + C$$

(B)
$$x^2/x^3 + x^3/x + C$$

(C)
$$-2/x^3 + 2x + C$$

(D)
$$-1/x + x^3/3 + C$$

(E)
$$\arccos(x^2) + C$$

12. The antiderivative $\int \frac{1}{x} + xe^{x^2} dx$ is

(A)
$$x^0 + e^{x^2} + C$$

(B)
$$\ln|x| + e^{x^2}/2 + C$$

(C)
$$-1/x^2 + 2x^2e^{x^2} + C$$

(D)
$$\ln |x| + \ln(e^{x^2}) + C$$

(E)
$$-1/x^2 + (2x^2 + 1)e^{x^2} + C$$

13. The antiderivative $\int \sin(\frac{x}{3}) dx$ is

(A)
$$3\cos(\frac{x}{3}) + C$$

(B)
$$\frac{1}{2}\sin^2(\frac{x}{3}) + C$$

(C)
$$-3\cos(\frac{x}{3}) + C$$

$$(D) - \cos(\frac{x}{3}) + C$$

(E)
$$\cos(\frac{x}{3}) + C$$

14. The antiderivative $\int \tan^2 x \, dx$ is

(A)
$$\tan x - x + C$$

(B)
$$\ln(\cos^2 x) + C$$

(C)
$$\sec x + x + C$$

(D)
$$\tan x + C$$

(E)
$$\sec x + C$$

15. The antiderivative $\int \frac{1}{\sqrt{4-x^2}} dx$ is

(A)
$$4\arcsin(x/4) + C$$

(B)
$$\arcsin(x/2) + C$$

(C)
$$-\frac{\sqrt{4-x^2}}{2x} + C$$

(D)
$$2\arccos(x/2) + C$$

(E)
$$\frac{x}{(4-x^2)^{3/2}} + C$$

- 16. The statement $\lim_{x\to a} f(x) = L$ means
 - (A) f(a) = L
 - (B) if x < a then f(x) < L, and if x > a then f(x) > L
 - (C) the function f is continuous at x = a
 - (D) For x close to a, f(x) will be close to L
 - (E) for x close to a, but $x \neq a$, f(x) will be close to L
- 17. Which function is not continuous on its domain?
 - (A) x/|x|
 - (B) $\ln x$
 - (C) |x|
 - (D) $1/(x^2-1)$
 - (E) $\lfloor x \rfloor$
- 18. If $f(x) = x^3$, which of the following limits equals f'(2)?
 - (A) $\lim_{x \to 2} \frac{x^3 8}{x 2}$
 - (B) $\lim_{h \to 0} \frac{(2-h)^3 + h^3}{h}$
 - (C) $\lim_{h \to 0} \frac{3h + 3h^2 + h3}{h}$
 - (D) $\lim_{x \to 2} \frac{(2+h)^3 h^3}{h}$
 - (E) $\lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$
- 19. The function $f(x) = \sqrt{x^2 1}$ has natural domain:
 - (A) [-1,1]
 - (B) $[1, \infty)$
 - (C) $(-\infty, -1] \cup [1, \infty)$
 - (D) $(-\infty, \infty)$
 - (E)[0,1]
- 20. The line y = 3x + 1 is tangent to some curve at point $(\frac{1}{3}, 2)$. The normal line, at the same point, is
 - (A) $y = -\frac{x}{3} + \frac{19}{9}$
 - (B) y = 3x 1
 - (C) $y 2 = \frac{1}{3}(x \frac{1}{3})$
 - (D) $y = -\frac{x}{3} + 1$
 - (E) None of these.

21.	The	value	of	tan	(5π)	/4)	is

- (A) $\sqrt{2}/2$
- (B) $-\sqrt{2}/2$
- (C) 1
- (D) $\sqrt{3}$
- (E) -1

22. How many solutions are there to the equation
$$4(2^x)^x = 8^x$$
.

- (A) 1
- (B) 3
- (C) 0
- (D) 2
- (E) more than 3

23. Use the laws of logs to simplify $\log_{15} 75 + \log_{15} 3$.

- (A) 2
- (B) $\log_{15} 78$
- (C) 5 + 1/5
- (D) $\log(5) + \log(1/5)$
- (E) $\log_{30} 225$

24. Evaluate
$$\lim_{x\to-\infty} \tanh(x)$$
.

- $(A) -\infty$
- (B) +1
- $(C) +\infty$
- (D) -1
- (E) 0

- (A) $(e^3 e^{-3})/2$
- (B) 5/3
- (C) 4/3
- (D) $\cosh(-\ln 3)$
- (E) $(\ln(3) + \ln(1/3))/2$

- 26. A car travels $7t + 2t^2$ metres in t seconds. Let V_1 be the instantaneous velocity at t = 2 secs, V_2 the average velocity in the interval $2 \le t \le 2.5$ sec, V_3 the average velocity in the interval $2 \le t \le 3$ sec.
 - (A) $V_1 = 15m/s$, $V_2 = 16.5m/s$, $V_3 = 17m/s$
 - (B) $V_1 = 15m/s$, $V_2 = 16m/s$, $V_3 = 17m/s$
 - (C) $V_1 = 16m/s$, $V_2 = 17m/s$, $V_3 = 15m/s$
 - (D) $V_1 = 22m/s$, $V_2 = 17m/s$, $V_3 = 16m/s$
 - (E) $V_1 = 22m/s, V_2 = 15m/s, V_3 = 14m/s$
- 27. Imagine stretching a long string around the earth's equator, where the radius of the earth is R metres. Cut the string, and raise it everywhere so it is one metre above the earth everywhere. How much extra string do you need to rejoin the cut ends?
 - (A) 2π metres
 - (B) R/π metres
 - (C) $(R/\pi)^2$ metres
 - (D) πR metres
 - (E) π metres
- 28. For the function $y = 6\sqrt[3]{x}$, if x changes from 1000 to 1001, the approximate change in y is
 - (A) $dy = 2x^{-2/3}$
 - (B) $dy = 6(\sqrt[3]{1001} 10)$
 - (C) dy = .01861
 - (D) $dy = \Delta y$
 - (E) dy = 1/50
- 29. If $y = x^{4/3}$ and x increases by 3%, then y will change by approximately
 - (A) 4% (B) 2% (C) 0% (D) 1% (E) 3%
- 30. Suppose f,g are differentiable functions, with f(2)=3, f'(2)=6, f'(-1)=5 and g(2)=-1, g'(2)=7, g'(-1)=0. Then $(f\circ g)'(2)$ is
 - (A) 42 (B) does not exist (C) 0 (D) 35 (E) -5

31. The tangent line to curve $y = \cos(2x)$ at point $(\frac{\pi}{6}, \frac{1}{2})$ is

(A)
$$y = -\sqrt{3}x + \frac{1}{2} + \frac{\sqrt{3}\pi}{6}$$

(B)
$$y = \sqrt{2}x + \frac{1}{2} - \frac{\sqrt{2}\pi}{6}$$

(C)
$$y = \sqrt{3}x + \frac{1}{2} - \frac{\sqrt{3}\pi}{6}$$

(D)
$$y = \frac{1}{2} - 2\sin(2x) \cdot (x - \frac{\pi}{6})$$

(E)
$$y = -\sqrt{2}x + \frac{1}{2} + \frac{\sqrt{2}\pi}{6}$$

32. Given the curve $x^2y^3 = 4x - y$ which passes through the point P = (3, 1), the slope at P equals

(A)
$$(4 - 2xy^3)/(3x^2y^2 + 1)$$

(B)
$$3/(3x^2y^2+1)$$

(C)
$$-25/14$$

(D)
$$4/(3x^2y^2+1)$$

$$(E) -1/14$$

33. The curve in the previous question also passes through (0,0). The Mean Value Theorem says

(A) for some
$$x$$
 between 0 and 3, $\frac{dy}{dx} = -3$

(B) for some
$$x$$
 between 0 and 1, $\frac{dy}{dx} = \frac{1}{3}$

(C) for some
$$x$$
 near 0 , $\frac{dy}{dx} = 3$

(D) for some y between 0 and 1,
$$\frac{dy}{dx} = 3$$

(E) for some
$$x$$
 between 0 and 3, $\frac{dy}{dx} = \frac{1}{3}$

34. Given the initial value problem $y' = x^{1/3}, y(1) = \frac{11}{4}$, then the solution $y = \frac{3}{4}x^{4/3} + C$ has constant

$$(A) C = 1$$

(B)
$$C = -2$$

(C)
$$C = 2$$

(D)
$$C = 0$$

(E)
$$C = 11/4$$

35. The inverse to function $f(x) = \frac{x}{x+1}$ is

(A)
$$f^{-1}(x) = \frac{x+1}{x}$$

(A)
$$f^{-1}(x) = \frac{x+1}{x}$$

(B) $f^{-1}(x) = \frac{1}{(x+1)^2}$

(C)
$$f^{-1}(y) = \frac{x}{x+1}$$

(D) $f^{-1}(x) = \frac{x}{1-x}$

(D)
$$f^{-1}(x) = \frac{x}{1-x}$$

(E)
$$f^{-1}(y) = \frac{y}{y+1}$$

- 36. Suppose the function $f(x) = \frac{4x^3}{x^2 + 1}$ has inverse g. Find g'(2).
 - (A) 25/112
 - (B) 1/4
 - (C) 4
 - (D) 1
 - (E) 112/25
- 37. Compute $\lim_{x\to\infty} x^{-4}e^x$
 - (A) 0 (B) 1 (C) e (D) 4 (E) ∞
- 38. Determine on what interval(s) the function $f(x) = xe^{-x}$ is increasing.
 - $(A) [1, \infty)$
 - (B) $(-\infty, 1]$
 - (C) $[2,\infty]$
 - (D) $[-\infty, 0] \cup [1, \infty)$
 - (E) [1, 2]
- 39. Plutonium is a radioactive element with a half-life of approximately 24,000 years. If you have 100 grams of plutonium today, how much remains after 36,000 years?
 - (A) $50/\sqrt{2}$ grams
 - (B) $100e^{(3/2)\ln 2}$ grams
 - (C) 25 grams
 - (D) $50\sqrt{2}$ grams
 - (E) $100e^{-36,000}$ grams
- 40. With $u = \sqrt{(x+1)(x^2+1)(x^3+1)}$, use logarithmic differentiation to find u'(1).
 - (A) $3\sqrt{2}$
 - (B) $\ln(2\sqrt{2})$
 - (C) 3/2
 - (D) ln(6)
 - (E) $2\sqrt{2}$