The University of Calgary
 Department of Mathematics and Statistics
 MATH 249

Worksheet \#2

Solution.

RECALL:the types of limits :"
$\frac{1}{ \pm \infty} "=0 \quad " \frac{1}{0^{+} "}\left(\frac{1}{\text { small positive numbers }}\right)=+\infty \quad " \frac{1}{0^{-}} "\left(\frac{1}{\text { small negativee numbers }}\right)=-\infty$
BUT $\quad " 0, " \pm \frac{\infty}{\infty} ", " \infty-\infty ", " 0 \cdot \pm \infty "$ are indetermined types it means
the result could be any number or infinity thus we have to simplify
For 1a) For $f(x)=\frac{1}{1-x}\left(1-\frac{4}{x+3}\right)$
the type of the limit is " 0 " as $x \rightarrow 1$ so we have to simplify
$f(x)=\frac{1}{1-x} \cdot \frac{x+3-4}{x+3}=\frac{-(1-x)}{(1-x)(x+3)}=\frac{-1}{x+3}$ for any $x \neq 1,-3$.
As $x \rightarrow 1$ the limit is $L=\frac{-1}{4}$.

For 1b)

as $x \rightarrow-3^{+} \quad x+3>0$
we can use the simplification from above and the type of the limit is " $\frac{-1}{0^{+}}$" so the limit is $-\infty$. OR
from the original formula the limit is $L=\frac{1}{4} \cdot\left(1-" \frac{4}{0^{+}} "\right)=-\infty$
For 1c)
as $x \rightarrow+\infty$.
From the simplified formula the type is $" \frac{-1}{\infty} "$ so the limit is 0 .
OR
from the original the type is $" \frac{1}{-\infty} " \cdot\left(1-" \frac{4}{\infty} "\right)=0 \cdot(1-0)=0$.
For 2)
For $f(x)=\sqrt{9-x^{2}}$ and $g(x)=\frac{3}{x-1}$ find the domains
for $D_{f} \quad$ solve $9-x^{2} \geq 0 \quad \rightarrow \quad(3-x)(3+x) \geq 0$
parabola open down, above the x -axis between roots
OR by split point method
split points are $x= \pm 3$, testing $--^{n e g}--_{-3}---^{p o s}---_{3}--^{n e g}---$
so $D_{f}=[-3,3] \quad D_{g}=\{x \neq 1\}$ since $x-1 \neq 0$
Now,
$g \circ g(x)=g(g(x))=\frac{3}{(\ldots)-1}=\frac{3}{\frac{3}{x-1}-1}=\frac{3}{\frac{3-(x-1)}{x-1}}=\frac{3(x-1)}{4-x}$
we must start in D_{g} i.e. $x \neq 1$ and we have to guarantee that
$4-x \neq 0$ so $x \neq 4$ together $\quad D_{g \circ g}=\{x \neq 1,4\}$
then
$f \circ g(x)=\sqrt{9-(. .)^{2}}=\sqrt{9-\frac{9}{(x-1)^{2}}}=\sqrt{9 \cdot\left(1-\frac{1}{(x-1)^{2}}\right)}=3 \cdot \sqrt{\frac{x^{2}-2 x+1-1}{(x-1)^{2}}}=3 \sqrt{\frac{x(x-2)}{(x-1)^{2}}}$
we must start in $\mathrm{D}_{g}, x \neq 1$ and quarantee that $\frac{x(x-2)}{(x-1)^{2}} \geq 0$
split points are $x=0,2,1$
testing $--^{p o s}--_{0}--^{n e g}--_{1}--^{n e g}--_{2}-^{p o s}---\mathrm{so} \quad D_{f \circ g}=(-\infty, 0] \cup[2, \infty)$.
For 3)
For $g(x)=\frac{4}{2 x-8}$ and $f(x)=\sqrt{x^{2}-9}$
$D_{g}=\{x \neq 4\} \quad$ and $D_{f}=(-\infty,-3] \cup[3,+\infty)$ since we have to solve: $x^{2}-9 \geq 0$
$(x-3)(x+3) \geq 0 \quad$ parabola open up with roots $x= \pm 3$

$$
\text { OR } \quad x^{2} \geq 9 \quad \sqrt{x^{2}}=|x| \geq 3
$$

Now, $g \circ g(x)=\frac{4}{2()-8}=\frac{2 \cdot 2}{2\left[\left(\frac{4}{2 x-8}\right)-4\right]}=\frac{2}{\frac{4-8 x+32}{2 x-8}}=2 \cdot \frac{2 x-8}{36-8 x}=\frac{4(x-4)}{4(9-2 x)}=\frac{x-4}{9-2 x}$
for $x \neq 4$ and $x \neq \frac{9}{2} \quad$ thus $\quad D_{g \circ g}=(-\infty, 4) \cup\left(4, \frac{9}{2}\right) \cup\left(\frac{9}{2},+\infty\right)$.
then
$g \circ f(x)=\frac{4}{2()-8}=\frac{4}{2 \sqrt{x^{2}-9}-8}=$ you can simplify
$=\frac{2}{\sqrt{x^{2}-9}-4} \cdot \frac{\sqrt{x^{2}-9}+4}{\sqrt{x^{2}-9}+4}=\frac{2\left(\sqrt{x^{2}-9}+4\right)}{x^{2}-9-4^{2}}=\frac{2\left(\sqrt{x^{2}-9}+4\right)}{x^{2}-25}$
we must start with $x \in D_{f}$ and that new denominator must be non-zero
$\sqrt{x^{2}-9}-4 \neq 0, \sqrt{x^{2}-9} \neq 4$, so $x^{2}-9 \neq 4^{2}, x^{2} \neq 25$
OR
using the simplification $x^{2}-25 \neq 0$ i.e. $x \neq \pm 5$, together with D_{f}
$D_{g \circ f}=(-\infty,-5) \cup(-5,-3] \cup[3,5) \cup(5,+\infty)$.
For 4a)
for $f(x)=\frac{1-4 x^{2}}{6 x^{2}-5 x+1}$ as $x \rightarrow-\infty \quad$ the type is $" \frac{-\infty}{\infty}$ " so
divide top and bottom by x^{2} :
$\lim _{x \rightarrow-\infty} \frac{\frac{1}{x^{2}}-4}{6-\frac{5}{x}+\frac{1}{x^{2}}}=\frac{0-4}{6-0+0}=-\frac{4}{6}=-\frac{2}{3} \quad\left(\right.$ since $\left." \frac{1}{ \pm \infty} "=0\right)$

For 4b)

as $x \rightarrow \frac{1}{2} \quad$ the type is $" \frac{0}{0}$ " so factorize the polynomials
$\lim _{x \rightarrow \frac{1}{2}} \frac{(1-2 x)(1+2 x)}{(2 x-1)(3 x-1)}=\lim _{x \rightarrow \frac{1}{2}} \frac{-(1+2 x)}{3 x-1}=\frac{-2}{\frac{1}{2}}=-4$.
For 4c) as $x \rightarrow \frac{1}{3}^{-}$
we can use the simplification from above then the type is " $\frac{n e g \# "}{0^{-}}$" since $x<\frac{1}{3}$ so $3 x-1<0$ $\lim _{x \rightarrow \frac{1}{3}^{-}} \frac{-(1+2 x)}{3 x-1}=" \frac{-\frac{5}{3}}{0^{-}} "=" \frac{1}{0^{+}} "=+\infty$
For 5a)
For $\frac{\sqrt{3 x}-3}{\sqrt{2 x^{2}-6 x}} \quad$ as $x \rightarrow 3^{+}$
$\lim _{x \rightarrow 3^{+}} \frac{\sqrt{3 x}-3}{\sqrt{2 x^{2}-6 x}}=" \frac{0}{0} "=\lim _{x \rightarrow 3^{+}} \frac{\sqrt{3 x}-3}{\sqrt{2 x^{2}-6 x}} \cdot \frac{\sqrt{3 x}+3}{\sqrt{3 x}+3}=\lim _{x \rightarrow 3^{+}} \frac{3 x-3^{2}}{\sqrt{2 x^{2}-6 x}} \cdot \frac{1}{\sqrt{3 x}+3}=$
$=\lim _{x \rightarrow 3^{+}} \frac{3(x-3)}{\sqrt{2 x(x-3)}} \cdot \frac{1}{\sqrt{3 x}+3}=\lim _{x \rightarrow 3^{+}} \frac{3}{\sqrt{2 x}} \cdot \frac{x-3}{\sqrt{x-3}} \cdot \frac{1}{\sqrt{3 x}+3}=$
(using $\frac{a}{\sqrt{a}}=\sqrt{a}$ for $\left.a>0\right)$
$=\lim _{x \rightarrow 3^{+}} \frac{3}{\sqrt{2 x}} \cdot \sqrt{x-3} \cdot \frac{1}{\sqrt{3 x}+3}=\frac{3}{\sqrt{6}} \cdot 0 \cdot \frac{1}{6}=0$.

For 5b) \quad as $x \rightarrow+\infty$,
the type is $" \frac{\infty}{\infty} "$ so we have to divide by the highest power in the denominator in the original from by $x=\sqrt{x^{2}}(x>0)$:
$\lim _{x \rightarrow+\infty} \frac{\sqrt{3 x}-3}{\sqrt{2 x^{2}-6 x}} \cdot \frac{\frac{1}{\sqrt{x^{2}}}}{\frac{1}{\sqrt{x^{2}}}}=\lim _{x \rightarrow+\infty} \frac{\sqrt{\frac{3}{x}}-\frac{3}{x}}{\sqrt{2-\frac{6}{x}}}=\frac{0-0}{\sqrt{2}}=0$
OR we can used the simplified expresion from a)
$\lim _{x \rightarrow+\infty} \frac{3}{\sqrt{2 x}} \cdot \sqrt{x-3} \cdot \frac{1}{\sqrt{3 x}+3}=\lim _{x \rightarrow+\infty} 3 \sqrt{\frac{x-3}{2 x}} \cdot \frac{1}{\sqrt{3 x}+3}=$
$=\lim _{x \rightarrow+\infty} 3 \sqrt{\frac{1}{2}-\frac{3}{2 x}} \cdot \lim _{x \rightarrow+\infty} \frac{1}{\sqrt{3 x}+3}=\frac{3}{\sqrt{2}} \cdot 0=0$ since $" \frac{1}{\infty} "=0$.
For 5c) as $x \rightarrow 0$
the limit DNE (does not exist neither as a number nor as $\pm \infty$)
since the function is not defined for small negative $x \quad(\sqrt{n e g})$
For 6)
For $f(x)=\frac{\sqrt{3-x}}{x^{2}-4 x+3}$
For 6 a) as $x \rightarrow 3^{-}$
the type is $" \frac{0}{0}$ " and the function is defined for $x<3$ and $x \neq 1$ we can simplify
$f(x)=\frac{\sqrt{3-x}}{x^{2}-4 x+3}=\frac{\sqrt{3-x}}{(x-3)(x-1)}=\frac{\sqrt{3-x}}{-(3-x)(x-1)}=\frac{\sqrt{3-x}}{-\sqrt{3-x} \sqrt{3-x}(x-1)}=$
$-\frac{1}{\sqrt{3-x}(x-1)}$
Now the type is $" \frac{-1}{0^{+} \cdot(2)} "=" \frac{1}{0^{--}} "$ and the limit is $\quad-\infty$.
For 6b) as $x \rightarrow 1^{+}$
We can use the simplification from above or at least identify the type " $\frac{\sqrt{2}}{0}$ "
so we have to investigate the sign of the bottom
Since $x>1$ and $f(x)=\frac{\sqrt{3-x}}{(x-3)(x-1)}$ we can see that the type is $: " \frac{\sqrt{2}}{(-2) \cdot 0^{+}} "=" \frac{1}{0^{-}} "$ and the limit is $\quad-\infty$.

For 6c)

as $x \rightarrow+\infty$.
the limit DNE (does not exists) since the function is not defined for big positive x .

For 7)

For

$$
g(x)=\sqrt{3+x} \text { and } \quad f(x)=\sqrt{x-5}
$$

fiind the domains $D_{g}=[-3,+\infty)$ since it must $3+x \geq 0$ and
$D_{f}=[5,+\infty)$ since it must $x-5 \geq 0$
Now
$f \circ g(x)=f(g(x))=\sqrt{(. .)-5}=\sqrt{\sqrt{3+x}-5}$
we must start in D_{g} i.e. $x \in[-3,+\infty)$ and we have to guarantee that
$\sqrt{3+x}-5 \geq 0 \quad$ solve: $\quad \sqrt{3+x} \geq 5$
both sides are positive so we can square $(3+x) \geq 25$, and $x \geq 22$, together
$D_{f \circ g}=[22,+\infty)$
then
$g \circ g(x)=\sqrt{3+(. .)}=\sqrt{3+\sqrt{3+x}}$
we must start in $\mathrm{D}_{g}=[-3,+\infty)$ and quarantee that $3+\sqrt{3+x} \geq 0$
but it is always true for any $x \in[-3,+\infty)$ so $D_{g \circ g}=[-3,+\infty)$.
For 8a) as $x \rightarrow 0$
the type is $" \frac{0}{0} "$ and
if x is a small $\#$,neg. or pos, $x-3$ is close to -3 so negative
thus $|x-3|=-(x-3)=3-x$
and $x+3$ is close to 3 so $x+3$ is positive thus $|x+3|=x+3$
therefore
$f(x)=\frac{|x-3|-|x+3|}{x}=\frac{3-x-(x+3)}{x}=\frac{-2 x}{x}=-2$ for $x \neq 0$
so the limit is $L=-2$.
ALSO
$\frac{|x-3|-|x+3|}{x} \cdot \frac{|x-3|+|x+3|}{|x-3|+|x+3|}=\frac{|x-3|^{2}-|x+3|^{2}}{x \cdot(|x-3|+|x+3|)}=\frac{(x-3)^{2}-(x+3)^{2}}{x \cdot(|x-3|+|x+3|)}=$
$=\frac{x^{2}-6 x+3^{2}-\left(x^{2}+6 x+3^{2}\right)}{x \cdot(|x-3|+|x+3|)}=\frac{-12 x}{x \cdot(|x-3|+|x+3|)}=\frac{-12}{(|x-3|+|x+3|)}$
for any $x \neq 0$
Now the limit as $x \rightarrow 0 \quad$ is $\quad L=\frac{-12}{3+3}=-2$.
For8b) as $x \rightarrow-\infty$
For negative number x with big magnitude $x-3$ is negative thus $|x-3|=-(x-3)=3-x$, also $x+3$ is negative thus $\quad|x+3|=-(x+3)=-3-x \quad$ then $f(x)=\frac{|x-3|-|x+3|}{x}=\frac{3-x+x+3}{x}=\frac{6}{x}$ so the type of the limit is " $\frac{1}{\infty}$ " and $L=0$.

ALSO for both b) and c)

using the siplification from above $f(x)=\frac{-12}{(|x-3|+|x+3|)}$ so the type is " $\frac{-12}{\infty}$ " and the limit is 0 .
For 8 c) as $x \rightarrow+\infty$.
For x big positive both expressions $x-3$ and $x+3$ are positive so we can ignore absolute values and
$f(x)=\frac{x-3-(x+3)}{x}=\frac{-6}{x}$ and the type of the limit is " $\frac{-6 "}{\infty}$ " and the limit is 0 .

For 9)

For $g(x)=\sqrt{3-x}$ and $f(x)=\frac{6}{3 x-1}$
find the domains $D_{f}=\left\{x \neq \frac{1}{3}\right\}$ since it must $3 x-1 \neq 0$;
$D_{g}=(-\infty, 3]$ since it must $3-x \geq 0$.
Now
$f \circ f(x)=f(f(x))=\frac{6}{3(\ldots)-1}=\frac{6}{3 \cdot \frac{6}{3 x-1}-1}=\frac{6}{\frac{18-(3 x-1)}{3 x-1}}=\frac{6(3 x-1)}{19-3 x}$
we must start in D_{f} i.e. $x \neq \frac{1}{3}$ and we have to guarantee that $19-3 x \neq 0$ so $x \neq \frac{19}{3}$ together $\quad D_{f \circ f}=\left\{x \neq \frac{1}{3}, \frac{19}{3}\right\}$
then
$g \circ f(x)=\sqrt{3-(. .)}=\sqrt{3-\frac{6}{3 x-1}}=\sqrt{\frac{3(3 x-1)-6}{3 x-1}}=\sqrt{\frac{9 x-9}{3 x-1}}=3 \sqrt{\frac{x-1}{3 x-1}}$
we must start in $D_{f}: x \neq \frac{1}{3}$ and quarantee that $\quad \frac{x-1}{3 x-1} \geq 0$,
split points are $x=1, \frac{1}{3} \quad$ testing: $-{ }^{p o s}--_{\frac{1}{3}}--^{\text {neg }}--_{1}--^{p o s}-$
so the domain is $D_{g \circ f}=\left(-\infty, \frac{1}{3}\right) \cup[1,+\infty)$

