# jThe University of Calgary <br> Department of Mathematics and Statistics <br> MATH 249 <br> Worksheet \#4 

1. Find an equation of the tangent line to

$$
\sqrt{x^{2}-y}=\frac{9 x}{y}-1
$$

at the point $\mathrm{P}(5,9)$.
2. Find a general antiderivative of $f(x)=\frac{5 \sqrt{x}-6 x^{3}-8 x^{2}+3}{x^{2}}$ for $x>0$.
3. Solve $y^{\prime \prime}=2 \sin (\pi-2 x)$ with $y^{\prime}(\pi)=0$ and $y(\pi)=3$.
4. Find the second derivative of $f(x)=x \cos \left(x^{2}\right)$.Simplify.
5. Find $y^{\prime}$ in terms of $x$ and $y$ if $\quad 2 x+3 y=\frac{y^{2}}{x+1}$.
6. Find a general antiderivative of $\quad f(x)=\frac{1}{\cos ^{2}(3 x-1)}$ in the domain (find the domain).
7. Solve $y^{\prime \prime}=\frac{3}{\sqrt{x}}-6 x, y^{\prime}(4)=2, y(4)=0$.
8. Find the second derivative of $y=\frac{1}{1+x^{2}}$. Simplify.
9. Find an equation of the tangent line at the point $(6, \pi)$ to

$$
2 \cos \frac{y}{x}+\frac{x y}{6}=\sqrt{3}+\pi .
$$

10. Solve (i.e. find $y$ including an interval )

$$
y^{\prime}=\frac{1}{(5-x)^{3}}
$$

with $\quad y(4)=1$
11. Find $\quad \int\left(3 \sqrt{x}-\frac{1}{3 x}\right)^{2} d x$ for $x>0$.

## SOLUTIONS

## For 1)

Use implicit differentiation and Chain Rule on the left ,Quotient Rule on right:
$\frac{1}{2}\left(x^{2}-y\right)^{-\frac{1}{2}} \cdot\left(x^{2}-y\right)^{\prime}=9 \cdot\left(\frac{x}{y}\right)^{\prime}-0$
$\frac{1}{2}\left(x^{2}-y\right)^{-\frac{1}{2}} \cdot\left(2 x-y^{\prime}\right)=9 \cdot \frac{1 \cdot y-x \cdot y^{\prime}}{y^{2}}$
now, $x=5, y=9, y^{\prime}=m$
$\frac{1}{2}(25-9)^{-\frac{1}{2}}(10-m)=9 \cdot \frac{9-5 m}{9^{2}}$ so $\frac{1}{8}(10-m)=\frac{1}{9}(9-5 m)$
multiply by $9 \cdot 8$
$90-9 m=72-40 m$ thus $\quad 31 m=-18$ and
$m=-\frac{18}{31} \quad$ and an equation is $\quad y=-\frac{18}{31}(x-5)+9$.
For 2)
get rid of the quotient
$\int f(x) d x=5 \int \frac{\sqrt{x}}{x^{2}} d x-6 \int \frac{x^{3}}{x^{2}} d x-8 \int \frac{x^{2}}{x^{2}} d x+3 \int \frac{1}{x^{2}} d x=$
$5 \int x^{-\frac{3}{2}} d x-6 \int x d x-8 \int d x+3 \int x^{-2} d x+c=5(-2) x^{-\frac{1}{2}}-6 \cdot \frac{x^{2}}{2}-8 x+3 \cdot \frac{x^{-1}}{-1}+c$
$=-\frac{10}{\sqrt{x}}-3 x^{2}-8 x-\frac{3}{x}+c \quad$ for $x>0$.
For 3)
$y^{\prime}=\int y^{\prime \prime} d x=2 \int \sin (\pi-2 x) d x=2 \cdot \frac{-\cos (\pi-2 x)}{-2}+c_{1}=\cos (\pi-2 x)+c_{1}$
using $\int \sin (a x+b) d x=\frac{-\cos (a x+b)}{a}+c_{1} \quad a=-2, b=\pi$
now use the condition $y^{\prime}=0$ for $x=\pi$
$0=\cos (-\pi)+c_{1}=-1+c_{1} \quad$ so $c_{1}=1$ and $\quad y^{\prime}=\cos (\pi-2 x)+1$
I*ntegrate again using $\int \cos (a x+b) d x=\frac{\sin (a x+b)}{a}+c$
$y=\int y^{\prime} d x=\int \cos (\pi-2 x) d x+\int 1 d x+c_{2}=\frac{\sin (\pi-2 x)}{-2}+x+c_{2}=-\frac{1}{2} \sin (\pi-2 x)+x+c_{2}$
use the second condition $\quad y=3 \quad$ for $x=\pi$
$3=-\frac{1}{2} \sin (-\pi)+\pi+c_{2}=0+\pi+c_{2}$ so $c_{2}=3-\pi$
and the solution is

$$
y=-\frac{1}{2} \sin (\pi-2 x)+x+3-\pi
$$

For 4)
by Product and Chain Rules
$f^{\prime}(x)=\left[x \cos \left(x^{2}\right)\right]^{\prime}=(x)^{\prime} \cdot \cos \left(x^{2}\right)+x\left(-\sin x^{2}\right)\left(x^{2}\right)^{\prime}=\cos \left(x^{2}\right)-2 x^{2} \sin \left(x^{2}\right)$
again
$f^{\prime \prime}(x)=\left[\cos \left(x^{2}\right)-2 x^{2} \sin \left(x^{2}\right)\right]^{\prime}=-2 x \sin \left(x^{2}\right)-4 x \sin \left(x^{2}\right)-2 x^{2} \cos \left(x^{2}\right) 2 x=$ $=-6 x \sin \left(x^{2}\right)-4 x^{3} \cos \left(x^{2}\right)$

## For 5)

use implicit differentiation,Quotient and Chain Rules:

$$
(2 x+3 y)^{\prime}=\left(\frac{y^{2}}{x+1}\right)^{\prime}
$$

$2+3 y^{\prime}=\frac{2 y y^{\prime}(x+1)-y^{2}}{(x+1)^{2}}$ multiply both side by $(x+1)^{2}$
$2(x+1)^{2}+3 y^{\prime}(x+1)^{2}=2 y y^{\prime}(x+1)-y^{2}$ all terms with $y^{\prime}$
$y^{\prime}\left[3(x+1)^{2}-2 y(x+1)\right]=-y^{2}-2(x+1)^{2}$
so

$$
y^{\prime}=\frac{-y^{2}-2(x+1)^{2}}{3(x+1)^{2}-2 y(x+1)} \text { if the denominator is not } 0 .
$$

OR
we can simplify first by multiplying the original expression by $(x+1)$

$$
2 x+3 y=\frac{y^{2}}{x+1} \quad(2 x+3 y)(x+1)=y^{2}
$$

then
$2 x^{2}+2 x+3 x y+3 y=y^{2}$ then differentiate by Pr.and Chain rules:
$4 x+2+3 y+3 x y^{\prime}+3 y^{\prime}=2 y y^{\prime} \quad 4 x+2+3 y=y^{\prime}(2 y-3 x-3)$
then

$$
y^{\prime}=\frac{4 x+2+3 y}{2 y-3 x-3} \text { if the denominator is not } 0 .
$$

Notice that it looks different because we have a relation between x and y .

## For 6)

$\int \frac{1}{\cos ^{2}(3 x-1)} d x=\frac{1}{3} \tan (3 x-1)+c$
since $(\tan 3 x-1)^{\prime}=\sec ^{2}(3 x-1) \cdot 3=\frac{3}{\cos ^{2}(3 x-1)}$
for $\quad 3 x-1 \neq \frac{\pi}{2}+k \pi$ so $x \neq \frac{1}{3}+\frac{\pi}{6}+k \frac{\pi}{3} \quad k=0, \pm 1, \pm 2, \pm 3, \ldots$
For 7)
$y^{\prime \prime}=\frac{3}{\sqrt{x}}-6 x \quad y^{\prime}(4)=2 \quad y(4)=0$ for $x>0$
$y^{\prime}=\int y^{\prime \prime} d x=3 \int x^{-\frac{1}{2}} d x-6 \int x d x+c_{1}=6 \sqrt{x}-3 x^{2}+c_{1}$
now $x=4 \quad y^{\prime}=2 \quad$ solve for $c_{1}$ :
$2=6 \cdot 2-3 \cdot 16+c_{1} \quad c_{1}=38$
so

$$
y^{\prime}=6 \sqrt{x}-3 x^{2}+38 \quad \text { for } x>0
$$

integrate again
$y=\int y^{\prime} d x=6 \int x^{\frac{1}{2}} d x-3 \int x^{2} d x+38 \int d x=6 \cdot \frac{2}{3} x^{\frac{3}{2}}-3 \cdot \frac{x^{3}}{3}+38 x+c_{2}$
$y=4 x^{\frac{3}{2}}-x^{3}+38 x+c_{2}$
now $x=4 \quad y=0 \quad$ solve for $c_{2}$ :
$0=4 \cdot 2^{3}-4^{3}+38 \cdot 4+c_{2} \quad c_{2}=-4(8-16+38)=-120$
thus the solution of the given problem is

$$
y=4 x^{\frac{3}{2}}-x^{3}+38 x-120 \quad \text { for any } x>0
$$

## For 8)

by Chain Rule
$y^{\prime}=\left(\frac{1}{1+x^{2}}\right)^{\prime}=\left[\left(1+x^{2}\right)^{-1}\right]^{\prime}=(-1)\left(1+x^{2}\right)^{-2} 2 x=-2 x\left(1+x^{2}\right)^{-2}$
by product and chain rules
$y^{\prime \prime}=(-2 x)^{\prime}\left(1+x^{2}\right)^{-2}-2 x\left[\left(1+x^{2}\right)^{-2}\right]^{\prime}=-2\left(1+x^{2}\right)^{-2}-2 x(-2)\left(1+x^{2}\right)^{-3} 2 x=$
$=-2\left(1+x^{2}\right)^{-2}+8 x^{2}\left(1+x^{2}\right)^{-3}$
Or by Quotient Rule

$$
\begin{aligned}
& y^{\prime}=\left(\frac{1}{1+x^{2}}\right)^{\prime}=\frac{0-2 x}{\left(1+x^{2}\right)^{2}} \quad y^{\prime \prime}=\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)^{\prime}= \\
& \frac{-2\left(1+x^{2}\right)^{2}+2 x 2\left(1+x^{2}\right) 2 x}{\left(1+x^{2}\right)^{4}}=\frac{\left(1+x^{2}\right)\left[-2\left(1+x^{2}\right)+8 x^{2}\right]}{\left(1+x^{2}\right)^{4}}=\frac{-2+6 x^{2}}{\left(1+x^{2}\right)^{3}}
\end{aligned}
$$

For 9 )
Use implicit differentiation: $\quad 2\left[\cos \frac{y}{x}\right]^{\prime}+\frac{1}{6}(x y)^{\prime}=(\sqrt{3}+\pi)^{\prime}$
by Chain, Quotient and Product Rules:
$2\left(-\sin \frac{y}{x}\right)\left(\frac{y}{x}\right)^{\prime}+\frac{1}{6}\left(1 \cdot y+x \cdot y^{\prime}\right)=0$
$-2 \sin \frac{y}{x} \cdot \frac{y^{\prime} \cdot x-y \cdot 1}{x^{2}}+\frac{1}{6}\left(y+x y^{\prime}\right)=0$
Now $x=6, y=\pi$, and $y^{\prime}=m$ :
$-2 \sin \frac{\pi}{6} \cdot \frac{6 m-\pi}{36}+\frac{1}{6}(\pi+6 m)=0$, multiply both sides by 36 and use $\sin \frac{\pi}{6}=\frac{1}{2}$ thus
$-(6 m-\pi)+6(\pi+6 m)=0$ and the equation is now: $-6 m+\pi+6 \pi+36 m=0$, thus
$30 m=-7 \pi$ and $m=-\frac{7 \pi}{30}$. The equation of the tangent line is :

$$
y=-\frac{7 \pi}{30}(x-6)+\pi
$$

## For 10)

For $x \neq 5 \quad y=\int y^{\prime} d x=\int(5-x)^{-3} d x=\frac{(5-x)^{-2}}{-2(-1)}+c=\frac{1}{2(5-x)^{2}}+c$
using $\int(a x+b)^{r} d x=\frac{(a x+b)^{r+1}}{a(r+1)}+c$,where $a=-1, b=5, r=-3$
now if $x=4, y=1$ solve for $c: \quad 1=\frac{1}{2}+c$, so $c=\frac{1}{2}$.
Together the solution is $y=\frac{1}{2}(5-x)^{-2}+\frac{1}{2}$ for $x \in(-\infty, 5)$
since the condition is at $x=4<5$.
For 11)
$\int\left(3 \sqrt{x}-\frac{1}{3 x}\right)^{2} d x$
( get rid of the power using $(A-B)^{2}=A^{2}-2 A B+B^{2}$ )
$=\int\left[(3 \sqrt{x})^{2}-2 \cdot 3 \sqrt{x} \cdot \frac{1}{3 x}+\left(\frac{1}{3 x}\right)^{2}\right] d x=$
$=9 \int x d x-2 \int x^{-\frac{1}{2}} d x+\frac{1}{9} \int x^{-2} d x=9 \cdot \frac{1}{2} x^{2}-2 \cdot 2 x^{\frac{1}{2}}+\frac{1}{9} \cdot \frac{x^{-1}}{-1}+c$
$y=\frac{9}{2} x^{2}-4 \sqrt{x}-\frac{1}{9 x}+c \quad$ for $x>0$.

