MATH 251/249

Midterm Handout

For 1)

a) $\lim _{x \rightarrow \infty}\left(x^{2}-x^{2} \cos \frac{1}{x}\right)=\lim _{x \rightarrow \infty} x^{2}\left(1-\cos \frac{1}{x}\right) " \infty \cdot 0 " \quad u=\frac{1}{x}, u \rightarrow 0^{+}$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \ldots= & \lim _{u \rightarrow 0^{+}} \frac{(1-\cos u)}{u^{2}} \cdot \frac{(1+\cos u)}{(1+\cos u)}=\lim _{u \rightarrow 0^{+}} \frac{\left(1-\cos ^{2} u\right)}{u^{2}(1+\cos u)}= \\
& =\lim _{u \rightarrow 0^{+}} \frac{\sin ^{2} u}{u^{2}(1+\cos u)}=\lim _{u \rightarrow 0^{+}}\left(\frac{\sin u}{u}\right)^{2} \cdot \lim _{u \rightarrow 0^{+}} \frac{1}{(1+\cos u)}=1 \cdot \frac{1}{2}=\frac{1}{2} . .
\end{aligned}
$$

b) $\quad \lim _{x \rightarrow 0}\left(x^{2}-x^{2} \cos \frac{1}{x}\right)=\lim _{x \rightarrow 0} x^{2}\left(1-\cos \frac{1}{x}\right) " 0 \cdot D N E "=0 \quad$ by Sq, Th since

$$
0 \leq 1-\cos \theta \leq 2 \text { for any } \theta \quad 0 \leq x^{2}\left(1-\cos \frac{1}{x}\right) \leq 2 x^{2} \rightarrow 0 \text { as } x \rightarrow 0
$$

For 2)
a) $\lim _{x \rightarrow 0} \frac{\sin x}{x-\pi}=\frac{0}{-\pi}=0$
b) $\lim _{x \rightarrow \pi} \frac{\sin x}{x-\pi}=" \frac{0}{0} "=\lim _{u \rightarrow 0} \frac{\sin (u+\pi)}{u}=\lim _{u \rightarrow 0} \frac{\sin u \cos \pi+\cos u \sin \pi}{u}=\lim _{u \rightarrow 0}-\frac{\sin u}{u}=-1$
where $x-\pi=u, x=u+\pi$ and $\cos \pi=-1, \sin \pi=0$
c) $\quad \lim _{x \rightarrow-\infty} \frac{\sin x}{x-\pi}=0$ by Squeeze Th. since $-1 \leq \sin x \leq 1$ and $\quad x-\pi<0$
$\frac{-1}{x-\pi} \geq \frac{\sin x}{x-\pi} \geq \frac{1}{x-\pi}$ and $\lim _{x \rightarrow-\infty} \frac{ \pm 1}{x-\pi}=0$.
For 3)
if $x=\frac{-1}{2}$ then $y=\frac{\cos \left(\frac{-\pi}{2}\right)}{\frac{3}{2}}=0$ so $\quad y=m\left(x+\frac{1}{2}\right)$
for m use Q.R. to find $y^{\prime}=\left(\frac{\cos \pi x}{1-x}\right)^{\prime}=\frac{-\pi \sin \pi x \cdot(1-x)-\cos \pi x \cdot(-1)}{(1-x)^{2}}$
at $x=-\frac{1}{2} \quad \cos \frac{-\pi}{2}=0, \sin \frac{-\pi}{2}=-1$ so
$m=\frac{-\pi(-1) \cdot \frac{3}{2}-0}{\left(\frac{3}{2}\right)^{2}}=\frac{\pi}{\frac{3}{2}}=\frac{2 \pi}{3} \ldots$ slope tangent $y=\frac{2 \pi}{3}\left(x+\frac{1}{2}\right)$.

For 4 a)

for $y=\left(\sin \frac{1}{\sqrt{x^{4}+1}}\right)^{3}$ use Chain Rule twice
$y^{\prime}=3\left(\sin \frac{1}{\sqrt{x^{4}+1}}\right)^{2}\left(\sin \frac{1}{\sqrt{x^{4}+1}}\right)^{\prime}=3\left(\sin \frac{1}{\sqrt{x^{4}+1}}\right)^{2}\left(\cos \frac{1}{\sqrt{x^{4}+1}}\right)\left(\left(x^{4}+1\right)^{-\frac{1}{2}}\right)^{\prime}=$
$=3\left(\sin \frac{1}{\sqrt{x^{4}+1}}\right)^{2}\left(\cos \frac{1}{\sqrt{x^{4}+1}}\right)\left(-\frac{1}{2}\right)\left(\left(x^{4}+1\right)^{-\frac{3}{2}}\right) 4 x^{3}=\frac{-6 x^{3} \sin ^{2} \frac{1}{\sqrt{x^{4}+1}} \cos \frac{1}{\sqrt{x^{4}+1}}}{\left(x^{4}+1\right)^{\frac{3}{2}}}$
For 4 b)
For $y=\cos \left(3-2 x^{2}\right)$ first the first derivative by Chain Rule :
$y^{\prime}=-\sin \left(3-2 x^{2}\right) \cdot\left(3-2 x^{2}\right)^{\prime}=.-\sin \left(3-2 x^{2}\right) \cdot(-4 x)=4 x \sin \left(3-2 x^{2}\right)$
then the second derivative by Product and Chain Rules

$$
\begin{aligned}
& y^{\prime \prime}=4\left[x \sin \left(3-2 x^{2}\right)\right]^{\prime}=4\left[(x)^{\prime} \sin \left(3-2 x^{2}\right)+x\left(\sin \left(3-2 x^{2}\right)\right)^{\prime}\right]= \\
& =4\left[1 \cdot \sin \left(3-2 x^{2}\right)+x \cos \left(3-2 x^{2}\right)\left(3-2 x^{2}\right)^{\prime}\right]= \\
& =4\left[\sin \left(3-2 x^{2}\right)-4 x^{2} \cos \left(3-2 x^{2}\right)\right]
\end{aligned}
$$

For 5)

the function $f(x)=x-2 \sin (\pi x)$ is continuous everywhere
and
$f\left(\frac{1}{2}\right)=\frac{1}{2}-2 \sin \frac{\pi}{2}=-\frac{3}{2}<0$ and $f(1)=1-2 \sin \pi=1>0$
so by IVT there must be an c between $\frac{1}{2}$ and 1 where $f(c)=0$

For 6)

the polynoial $p(x)=2 x^{3}-6 x^{2}+7$ is continuous everywhere
we can have 3 roots or at least one; to decide find Critical points first
$p^{\prime}(x)=6 x^{2}-12 x=6 x(x-2)=0 \quad x=0,2$
then find y-values $\quad x=0 \rightarrow y=7$
$x=2 \rightarrow y=2 \cdot 2^{3}-6 \cdot 2^{2}+7=2^{3}(2-3)+7=-1<0 j$
so we have 3 roots
to locate at least one test some values of $p: \quad p(0)=7>0$
and $p(-1)=-2-6+7=-1<0$ so by IVT(intermediate value theorem
there must be one root r_{1} between -1 and $0 \quad r_{1} \in(-1,0)$
since $p(1)=2-6+7=3>0$ and $p(2)=16-24+7=-1<0$
so by IVT there is another root between 1 and $2 \quad r_{2} \in(1,2)$
finally $p(3)=54-54+7=7>0$
by IVT there is a root $r_{3} \in(2,3)$

For 7)

$\cos \theta= \pm \sqrt{1-\sin ^{2} \theta}= \pm \sqrt{1-\frac{1}{25}}= \pm \sqrt{\frac{24}{25}}= \pm \frac{\sqrt{24}}{5}$
but since θ is in the second quadrant cos must be negative
$\sec \theta=\frac{1}{\cos \theta}=-\frac{5}{\sqrt{24}}$

For 8)

$\sin \theta= \pm \sqrt{1-\cos ^{2} \theta}= \pm \sqrt{1-\frac{4}{9}}= \pm \sqrt{\frac{5}{9}}= \pm \frac{\sqrt{5}}{3}$
but since θ is in the forth quadrant sin must be negative
$\sin \theta=-\frac{\sqrt{5}}{3}$. Now $\sin 2 \theta=2 \sin \theta \cos \theta=2 \cdot\left(\frac{-\sqrt{5}}{3}\right) \cdot \frac{2}{3}=-\frac{4 \sqrt{5}}{9}$.
For 9)

$$
f(x)=\left\{\begin{array}{ccc}
\left(\frac{2}{2 x+1}-3\right)\left(4 x^{2}-1\right) & \text { for } & x<-\frac{1}{2} \\
a x+b & \text { for } & -\frac{1}{2} \leq x \leq 2 \\
\cos \left(-\frac{\pi}{x}\right) & \text { for } & x>2
\end{array}\right.
$$

the function is continuous except $x=-\frac{1}{2}$ and $x=2$

$$
\begin{aligned}
& f\left(-\frac{1}{2}\right)=\frac{-1}{2} a+b=\lim _{x \rightarrow-\frac{1}{2}} \text { } f(x) \\
& \lim _{x \rightarrow-\frac{1}{2}^{-}} f(x)=\lim _{x \rightarrow-\frac{1}{2}^{-}}\left(\frac{2}{2 x+1}-3\right)\left(4 x^{2}-1\right)=\lim _{x \rightarrow-\frac{1^{-}}{-}}\left(\frac{2-3(2 x+1)}{2 x+1}\right)\left(4 x^{2}-1\right) \\
& =\lim _{x \rightarrow-\frac{1}{2}^{-}} \frac{2-6 x-3}{2 x+1} \cdot(2 x-1)(2 x+1)=\lim _{x \rightarrow-\frac{1}{2}^{-}}(-1-6 x)(2 x-1)=2 \cdot(-2)=-4
\end{aligned}
$$

All 3 numbers must be the same so $\quad \frac{-1}{2} a+b=-4$
Similarly,for $x=2$
$f(2)=2 a+b=\lim _{x \rightarrow 2^{-}} f(x)$ and $\lim _{x \rightarrow 2^{+}} \cos \frac{-\pi}{x}=\cos \frac{-\pi}{2}=0$

All 3 numbers must be the same so $2 a+b=0 \rightarrow \rightarrow b=-2 a$ back to $\frac{-1}{2} a+b=-4$ and. $a\left(\frac{-1}{2}-2\right)=-4 \Rightarrow a\left(\frac{-5}{2}\right)=-4$
so $a=(-4)\left(\frac{-2}{5}\right)=\frac{8}{5}$ and $b=-2 a=\frac{-16}{5}$.

For 10)

$f(x)=\left\{\begin{array}{ccc}\cos (\pi x)-2 \sin \frac{\pi x}{2} & \text { for } & x>3 \\ a x^{2}+b & \text { for } & 0 \leq x \leq 3 \\ 6 \cdot \frac{\sqrt{9-x}-3}{x} & \text { for } & x<0\end{array}\right.$
the function is continuous for any x except $x=3$ and $x=0$
$f(3)=9 a+b=\lim _{x \rightarrow 3^{-}} f(x)$ and
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left[\cos (\pi x)-2 \sin \frac{\pi x}{2}\right]=\cos (3 \pi)-2 \sin \frac{3 \pi}{2}=-1-2(-1)=1$
All 3 numbers must be the same so $9 a+b=1$
Similarly,for $x=0$
$f(0)=b=\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 0^{-}} 6 \cdot \frac{\sqrt{9-x}-3}{x} \cdot \frac{\sqrt{9-x}+3}{\sqrt{9-x}+3}=6 \lim _{x \rightarrow 0^{-}} \frac{9-x-3^{2}}{x(\sqrt{9-x}+3)}=$
$=6 \lim _{x \rightarrow 0^{-}} \frac{-x}{x(\sqrt{9-x}+3)}=6 \lim _{x \rightarrow 0^{-}} \frac{-1}{(\sqrt{9-x}+3)}=\frac{-6}{6}=-1$
All 3 numbers must be the same so $b=-1$
substitute $b=-1$ in the first equation $\quad 9 a-1=1 \quad a=\frac{2}{9}$ and $b=-1$.
For 11)

