MATH 249

Midterm Handout

1. Evaluate
(a) $\lim _{x \rightarrow \infty}\left(x^{2}-x^{2} \cos \frac{1}{x}\right)$
(b) $\quad \lim _{x \rightarrow 0}\left(x^{2}-x^{2} \cos \frac{1}{x}\right)$
2. Evaluate
(a) $\lim _{x \rightarrow 0} \frac{\sin x}{x-\pi}$
(b) $\lim _{x \rightarrow \pi} \frac{\sin x}{x-\pi}$
(c) $\lim _{x \rightarrow-\infty} \frac{\sin x}{x-\pi}$.
3. For $y=\frac{\cos \pi x}{1-x}$ find an equation of the tangent line at $x=-\frac{1}{2}$.
4. (a) For $y=\left(\sin \frac{1}{\sqrt{x^{4}+1}}\right)^{3}$ find y^{\prime};
(b) For $y=\cos \left(3-2 x^{2}\right)$ find the second derivative $y^{\prime \prime}$.
5. Show that the function $f(x)=x-2 \sin (\pi x)$ has at least one positive zero i.e. $f(x)=0$ at least for one $x>0$.
6. Locate all 3 roots of $p(x)=2 x^{3}-6 x^{2}+7$ i.e.
find 3 intervals each containing one root.Sketch the graph of $y=p(x)$.
7. Find $\sec \theta$ if $\sin \theta=\frac{1}{5}$ and $\frac{\pi}{2}<\theta<\frac{3}{2} \pi$.NO calculator.
8. If $\cos \theta=\frac{2}{3}$ and $\pi<\theta<2 \pi$ find $\sin \theta$ and then $\sin 2 \theta$.No calculator.
9. Find the values of a and b so that the function f is continuous everywhere
$f(x)=\left\{\begin{array}{ccc}\left(\frac{2}{2 x+1}-3\right)\left(4 x^{2}-1\right) & \text { for } & x<-\frac{1}{2} \\ a x+b & \text { for } & -\frac{1}{2} \leq x \leq 2 \\ \cos \left(-\frac{\pi}{x}\right) & \text { for } & x>2\end{array}\right.$.
10. Find the values of a and b so that the function f is continuous everywhere
$f(x)=\left\{\begin{array}{ccc}\cos (\pi x)-2 \sin \frac{\pi x}{2} & \text { for } & x>3 \\ a x^{2}+b & \text { for } & 0 \leq x \leq 3 \\ 6 \cdot \frac{\sqrt{9-x}-3}{x} & \text { for } & x<0\end{array}\right.$.
11. \mathbf{A}

Sketch the graph of ONE function satisfying all the following conditions:
(a) f is defined on $[-2,+\infty)$
(b) f is discontinuous at $x=0,1,2$ where $\lim _{x \rightarrow 1} f(x)=3, \lim _{x \rightarrow 2} f(x)$ DNE(does not exist).otherwise continuous
(c) $x=0$ is a vertical asymptote and $y=-2$ is a horizontal asymptote
(d) f is not differentiable at $x=-1,0,1,2$ (no $\left.f^{\prime}(-1)\right)$ otherwise differentiable and $f^{\prime}(x)=0$ for all $x \in(0,1)$, also $f^{\prime}(4)=0$.
(e) f is increasing on $(-2,-1)$ and on $(2,4)$; decreasing on $(-1,0)$ and on $(4,+\infty)$;
(f) the maximum value is 3 .

B

Sketch the graph of ONE function satisfying all the following conditions:
(a) f is defined on $(-\infty, 1]$
(b) f is discontinuous at $x=-3$ and $x=-2$ where $\lim _{x \rightarrow-3^{+}} f(x)=f(-3)=5$ otherwise continuous
(c) $x=-2$ is a vertical asymptote and $\lim _{x \rightarrow-\infty} f(x) D N E$ (does not exists)
(d) f is not differentiable at $x=-1,-2,-3$ (no $f^{\prime}(-1)$) otherwise differentiable and $f^{\prime}(x)=0$ for all $x \in(-1,0)$, also $f^{\prime}(-4)=0$;
(e) f is increasing on $(-3,-2)$ and on $(0,1)$; decreasing on $(-2,-1)$;
(f) the minimum value is -2 .

C

Sketch the graph of ONE function satisfying all the following conditions:
(a) f is defined on $(-\infty, 2)$
(b) f is discontinuous at $x=-3$ and $x=-2$ where $\lim _{x \rightarrow-3} f(x)=2$, and $x=-2$ is a vertical asymptote,otherwise continuous
(c) $y=1$ is a horintal asymptote
(d) f is not differentiable at $x=-1,-2,-3$ (no $f^{\prime}(-1)$) otherwise differentiable and $f^{\prime}(x)=0$ for all $x \in\left(1,2\right.$, also $f^{\prime}(-4)=0$;
(e) f is increasing on $(-1,1)$ and on $(-3,-2)$; decreasing on $(-2,-1)$;
(f) the minimum value is $\frac{1}{2}$.

D

Sketch the graph of ONE function satisfying all the following conditions:
(a) f is defined on $(-1, \infty)$
(b) f is discontinuous at $x=3$ and $x=2$ where $\lim _{x \rightarrow 2^{+}} f(x)=f(2)=3$, $x=3$ is a vertical asymptote ,otherwise continuous
(c) and $\lim _{x \rightarrow+\infty} f(x) D N E$ (does not exists)
(d) f is not differentiable at $x=0,2,3$ (no $\left.f^{\prime}(0)\right)$ otherwise differentiable and $f^{\prime}(x)=0$ for all $x \in(-1,0)$, also $f^{\prime}(4)=0$.
(e) f is increasing on $(2,3)$ and on $(3,4)$; decreasing on $(0,2)$;

E

Sketch the graph of ONE function satisfying all the following conditions:
(a) f is defined on $(-\infty,+\infty)$
(b) f is discontinuous at $x=-1$ and $x=2$ where $\lim _{x \rightarrow-1} f(x)$ DNE $x=2$ is a vertical asymptote ,otherwise continuous
(c) and $\lim _{x \rightarrow-\infty} f(x) D N E$ (does not exists), $y=-3$ is a horizontal asymptote;l
(d) f is not differentiable at $x=-1,1,2\left(\right.$ no $\left.f^{\prime}(1)\right)$ otherwise differentiable and $f^{\prime}(x)=0$ for all $x \in\left(2,3\right.$, also $f^{\prime}(4)=0$;
(e) f is increasing on $(-1,1)$; decreasing on $(1,2)$ and on $(4,+\infty)$
(f) the maximum value is 4 .

