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Complex numbers:

a+ bi, where i = \'—l
Real numbers:
'Rational and wratncnai numbers

Rational ) 23
numbers: 3’ E’ w019, _5

Integers:
=t =3 =2,=1,0,1,2,3.4, ...
Natural numbers:

T
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Figure A.1 describes the various categories of numbers that we will encounter in this text.
The simplest numbers are the natural numbers

I 2 3 & 5i...
These are a subset of the infegers

-4, =3, =2, -1, 0, I, 2, 3, 4,...

and these in turn are a subset of the rational rnumbers, which are the numbers formed by
taking ratios ol integers (avoiding division by 0). Some examples are

1 _2 Yoz B
v o5 =7, 019= i )

fad b

The early Greeks believed that every measurable quantity had to be a rational numbcr
However, this idea was overturned in the fifth century B.C. by Hippasus of Metapontum
who demonstrated the existence of irrational numbers, that is, numbers that cannot be
expressed as the ratio of two integers. Using geometric methods, he showed that the length
of the hypotenuse of the triangle in Figure A.2 could not be expressed as a ratio of integers,
thereby proving that /2 is an irrational number. Some other examples of irrational numbers
are

V3, V5 1++/2, J7. m

The rational and irrational numbers together comprise what is called the real nuember systent,
and both the rational and irrational numbers are called real numbers.

cos 197

Because the square of a real number cannot be negative, the equation
i

X7 ==

has no solutions in the real number system. In the eighteenth century mathematicians reme-
died this problem by inventing a new number, which they denoted by

i=+-1

and which they defined to have the property i> = —1. This, in turn, led to the development

" HIPPASUS OF METAPONTUM (circa 500 B.c.). A Greek Pythagorean philosopher. According to legend, Hippasus
made his discovery at sea and was thrown overboard by fanatic Pythagoreans beeause his result contradicted their
doctrine. The discovery of Hippasus is one of the most fundamental in the entire history of science.
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INTERVALS

The apen interval (a, &)

— 5
a b
a b

The closed interval [a, ]

Figure A.6

that & is not a member of the set A we will write @ ¢ A (read “a does not belong to A™).
For example, if A is the set of positive integers, then 5 € A, but —5 ¢ A. Somelimes sets
arise that have no members (e.g., the set of odd intcgers that are divisible by 2). A set with
no members is called an empty sef or a null set and is denoted by the symbol &,

Some sets can be described by listing their members between braces. The order in which
the members are listed does not matter, so, for example. the set A of posilive integers that
are less than 6 can be expressed as

A=11,2,3,4,5) or A=1{2.3,154)}
We can also write A in set-builder notation as
A ={x:xisaninteger and 0 < x < 6}

which is read “A is the set of all x such that x is an integer and 0 < x < 6.7 In general,
lo express a set § in set-builder notation we write § = {x : } in which the line is
replaced by a property that identifies exactly those elements in the set S,

If every member of a set A is also a member of a set B, then we say that A is a subset
of B and wrile A € B. For example, if A is the set of posilive integers and B is the set of
all integers, then A € B. If two sets A and B have the same members (i.e.. A € B and
B C A), then we say that A and B are equal and write A = B.

In calculus we will be concerned with sets of real numbers, called infervals. that correspond
to line segments on a coordinate line. For example, if @ < b, then the open interval from a
to b, denoted by (a, b), is the line segment extending from a to b, excluding the endpoints;
and the closed inferval from a to b, denoted by [a, b], is the line segment extending from
a 1o b, including the endpoints (Figure A.6). These sets can be expressed in set-builder
nolation as

(a, ])) = {.\' = X =< b} The open interval from a to b

I_ﬂ', l‘)] = {.’C T B e b} The closed interval from a o b

REMAREK.  Observe that in this notation and in the corresponding Figure A.6, parentheses
and open dots mark endpoints that are excluded from the interval, whereas brackets and
closed dots mark endpoints that are included in the interval. Observe also that in set-builder
notation for the intervals, it is understood that x is a real number, even though it is not stated
explicitly.

As shown in Table 1, an interval can include one endpoint and not the other: such
intervals are called half-open (or sometimes half-closed). Moreover, the table also shows
that it is possible for an interval to extend indefinitely in one or both directions. To indicate
that an interval extends indefinitely in the positive direction we write +se (read “posilive
infinity”) in place of a right endpoint, and to indicate that an interval extends indefinitely
in the negative direction we write —oe (read “negative infinity™) in place of a left endpoint.
Intervals that extend between two real numbers are called finite intervals, whereas intervals
that extend indefinitely in one or both directions are called infinite intervals.

REMARK. By convention, infinite intervals of the form [a. -3¢) or (===, b] are considered
to be closed because they contain their endpoint, and intervals of the form (a. +=) and
(—oe, b) are considered to be open because they do not include their endpoint. The interval
(—oe, +o0), which is the set of all real numbers, has no endpoints and can be regarded as
either open or closed, as convenient. This set is often denoted by the special symbol E.
To distinguish verbally between the open interval (0, +=) = {x : x = 0} and the closed
interval [0, 4-00) = {x : x = 0}, we will call x positive if x = 0 and nennegative it
x = 0. Thus, a positive number must be nonnegative, but a nonnegative number need not
be positive, since it might possibly be 0.
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Table 1
;'I'Elw..\l. SET GEOMETRIC o a -
NOTATION NOTATION PICTURE CLASSIFICATION
(¢, D) fx:a<x< b} 2 2 > Finite; open o
la, b] [x:a€x<b)} H——“j;——i- Finite; closed
la. D) {r:a<x<b} . > > Finite; half-open
(a, b] {x:a<x S b} e .-I-)——*- Finite; hall-open
{—oo, b] {x:x<bhl  =— = !r’ > Infinite; closed
(—eo, B) [x:x<h} i —> Infinite; open
[a, +eo0) [x:x=a}l e — - Infinite; closed
(a, +o2) lx:ix>al h —_— Infinite; open
(—oo, +oa) R — _—— Infinite; open and closed

If A and B are sets, then the union of A and B (denoted by AU B) is the set whose members
belong to A or B (or both), and the intersection of A and B (denoted by A N B) is the set
whose members belong to both A and B. For example,

[x:10<x<SiUx:l<x<T}={x:0<x < 7}
vix<liNfx:x20=x:0=<x<l}
x:x <0 Nfx:x>0=C
or in interval notation,
(0,5U,7) =(0,7)
(==, N[0, +o0) = [0, 1)
(—oe, )N (0, +22) =D

The following algebraic properties of inequalitics will be used frequently in this text. We
omit the proofs.

A.l  THEOREM (Praperties of Inequalities).  Let a, b, c, and d bhe real numbers.
(@) Ifa<bandb <c thena <c.

(b) Ifa <b, thena+c<b+canda—c<b—c

(¢) Ifa <b, thenac < be when c is positive and ac > bc when c is negative.
(d) Ifa<bandc <d, thena+c < b+d.

(e) Ifa and b are both positive or both negative and a < b, then 1/a > 1/b.

If we call the direction of an inequality its sense, then these properties can be paraphrased
as follows:

(b) The sense of an inequality is unchanged if the same number is added to or subtracted
from both sides.

(¢) The sense of an inequality is unchanged if both sides are multiplied by the same positive
number. but the sense is reversed if both sides are multiplied by the same negative
number.
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(d) Inequalities with the same sense can be added.

(e) If both sides of an inequality Tave the same sign, then the sense of the inequality is
reversed by taking the reciprocal of each side.

? REMARK. These properties remain true if the symbols < and > are replaced by < and >
! in Theorem A.1.
Example 1
STARTING RESULTING
INEQUALITY OPERATION INEQUALITY
2<6 Add 7 to both sides. 5<13
-2<6 Subtract 8 from both sides. -10<-2
-2<6 Multiply both sides by 3. -6< 18
-2<6 Multiply both sides by —3. 6>-18
Fag Y Multiply both sides by 4. 12 < 28
3<7 Multiply both sides by —4, —12>-28
. . = . I 1
3«7 Take reciprocals of both sides. 377
-8 <-6 Take reciprocals ol both sides. —% > —%
4<5-7<8 Add corresponding sides. 3<13
S = <
rerrsnrranraessresersinanesreeesettt  Asolution of an inequality in an unknown x is a value for x that makes the inequality a true
SOLVING INEQUALITIES statement. For example, x = 1 is a solution of the inequality x < 5, but x = 7 is not. The
set of all solutions of an inequality is called its selution set. It can be shown that il one does
not multiply both sides of an inequality by zero or an expression involving an unknown,
then the operations in Theorem A.l will not change the solution set of the inequality. The
process of finding the solution set of an inequality is called sefving the inequality.
Example 2 Solve3 47y <2y —09.
Solution. We will use the operations of Theorem A.1 (o isolate x on one side of the in-
equality.
34+7x = 2x —9 Given,
Tx = 2x — 12 We subtracted 3 from both sides,
S = — | 2 W subtracted 20 from both sides.
X = _I_%"l We multiplicd both sides by '
oS “' Because we have not multiplied by any expressions involving the unknown v, the last in-
g cquality has the same solution set as the first. Thus, the solution set is the interval (—ez, —%]
Figure A.7 shown in Figure A.7. <

Example 3 Solve7 <2 -5y <9.

Solution. The given inequality is actually a combination of the two inequalities

7<2—5x and 2—-5x <9

We could solve the two inequalities separately, then determine the values of x that satisfy
both by taking the intersection of the two solution sets. However, it is possible to work with
the combined inequalities in this problem:
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T<2—-5x =<9 Given.

5 < —5v =7  Wesubtracted 2 from each member.

We multiplied by — 1 and reversed

| = ¥ _
I A = the sense of the inequalities.
_z < X -9 For clarity, we rewrote the inequalities
35 RN = with the smuller number on the left.
—— 3 .
= Thus, the solution set is the interval (—% —I] shown in Figure A.8. <

Example 4 Solve x? — 3x > 10.

Solution. By subtracting 10 from both sides, the inequality can be rewritten as
X =3x—10>0

Factoring the left side yields
(x+2)(x—=5)=0

The values of x for whichx +2 =0o0rx —5 =0are x = —2 and x = 5. These values
divide the coordinate line into three open intervals,

(==, =2), (-2.3), (5§, +4x)

on each of which the product (x + 2)(x — 5) has constant sign. To determine those signs
we will choose an arbitrary number in each interval at which we will determine the sign;
these are called fest values. As shown in Figure A.9, we will use —3, 0, and 6 as our test
values. The results can be organized as follows:

SIGN OF
(x+2)x-5)
INTERVAL TEST VALUE AT THE TEST VALUE
(—oa, - 2} 8 (_)(_) =+
(=2, 5) 0 (+)(-) =~

(5, +o0) 6 (+)(+) =+

The pattern of signs in the intervals is shown on the number line in the middle of Figure A 9.
We deduce that the solution set is (—os, —2) U (5, +2). which is shown at the bottom of

Figure A.9. -
-3 0 6
3 | .
= 3 > Test \.rfaiues
Homm == o @) . o

= 5 > | Sign of (x +2)(x=5)
— ——— . Solution set for

=2 5 (x+2)x=5)=0

Figure A9

2x =5
Example 5 Solve e = Ik
et ]

Solution. We could start by multiplying both sides by x — 2 to eliminate the fraction.
However, this would require us to consider the cases x — 2 = 0 and x — 2 < 0 separately
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Figure A.10

EXERCISE SET A

Appendix A: Real Numbers, Intervals, and Inequalities

because the sense of the incquality would be reversed in the second case, but not the first.
The tollowing approach is simpler:

2x—5
3 < 1 Given.
X ik
2p=3 S . We subtracted | from both sides
1 abiain 1 0 op the nght.
x—2 8 5
(e —5) =(x—3) .
5 = We combined terms.
R
x—3
= =0 We simplilice.
Xo—ik

The quantity x — 3 is zero if x = 3, and the quantity x — 2 is zero if x = 2. These values
divide the coordinate line into three open intervals,

(—e0,2), (2.3), (3,+w)

on each of which the quotient (x — 3)/(x — 2) has constant sign. Using 0, 2.5, and 4 as test
values (Figure A.10), we obtain the following results:

SIGN OF
(x=3/(x-2)
INTERVAL TEST VALUE AT THE TEST VALUE
(—ea, 2) 0 (=)/(=) =+
(2,3) 25 (=)(+) = -
(3, +ca) 4 (H)f(+) =+

The signs of the quotient are shown in the middle of Figure A.10. From the figure we see
that the solution set consists of all real values of x such that 2 < x < 3. This is the interval

(2, 3) shown at the bottom of Figure A.10. -

0 25, 4 -

= 3 o »  Test values

+ + + + + + - =0 + + + + 4 Z

] 1 - i 2ol

> 3 » | Sign of =

| Solution set for
- =3
B 3 S 0

I R N R R R

1. Among the terms integer, rational, and irrational, which

ones apply to the given number?

(a) —3 (b) O
(d) 0.25 (e) =16
(g) 0.020202... (h) 7.000..

to the given number?
(a) O.31311311131111...

(c) 0.376237623762...

Which of the terms integer, rational, and irrational apply

(b) 0.729999 ...
(dy 174

3. The repeating decimal 0.137137137...can be expressedas =
a ratio of integers by writing

-y 4
© 5 x = 0.137137137...
“.) 2”2
1000x = 137.137137137...
' and subtracting to obtain 999x = 137 orx = % Use this

idea, where needed. to express the following decimals as
ratios of integers.

(a) 0.123123123...
(c) 38.07818181...

(b} T2TTT e
(d) 0.4296000...




4. Show that the repeating decimal 0.99999. .. represents the
number I, Since 1.000...is also a decimal representation
of 1, this problem shows that a real number can have two
different decimal representations. [Hint: Use the technique
of Exercise 3.]

5. The Rhind Papyrus, which is a fragment of Egyptian math-
ematical writing from about 1650 B.C., is one of the oldest
known examples of written mathematics. [t is stated in the
papyrus that the area A of a circle is related to its diameter
D by

— (8 Py’
A=(5D)

(a) What approximation (o w were the Egyptians using?
(b) Use a calculating utility to determine if this approxi-
el

5 i . i 2
mation is better or worse than the upprommalmn 7" @

6. The following are all famous approximations to m:

333
= Adrian Athonisroon, ¢. 1583
106
355
—_— Tsu Chung-Chi and others
113
63 (17 + 155 ,
] P Ramanugan
25\ 74155
22
— Archimedes
7
223
Archimeides
71

(a) Use a calculating utility to order these approximations
according to size.

(b) Which of these approximations is closest to but larger
than 7?7

{c) Which of these approximations is closest to but smaller
than ?

{d) Which of these approximations is mosl accurate?

7. In cach line of the accompanying table, check the blocks,
if any. that describe a valid relationship between the real
numbers ¢ and 5. The first line is already completed as an

illustration.
@ | b | a<b | asb | a>b | a2b | a=b
| 6 v v
6 I
-3 5
5 | -3
I
025 %
R I
3 1

Table Ex-7
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8. In each line of the accompanying table, check the blocks,

if any, that describe a valid relationship between the real
numbers a, &, and c.

a i b | c la<b<clagbecla<bszc|asgb<c]
S Y oo 3
SR
1 1 3
2 2 4
-5 | =5 | 5

075 1.25 | .25

Table Ex-8

9. Which of the following are always correct il a < b7
(A a—3=bH-—-3 (b) —a = —b
(c)3—a=3-0 (d) 6a < 6b
(e) a’ < ab () a < a*h

10. Which of the following are always correct if @ < b and
c=d?
(a) a +2¢ = b+ 2d
©)a—2c=b-2d

by a —2c=b—2d

11. For what values of ¢ are the following inequalities valid?
() a =a (b) a <a

12. If a < b and b < @, what can you say about a and 57

13. (a) If @ < b is true, does it follow that ¢ < b must also be

true’?
(b) If @ < b is true, does it follow that ¢ < b must also be
true?

14. In cach part, list the elements in the set.
(a) {x:x%—5x=0]
(b) [x :xisaninteger satisfying —2 < x < 3}
15. In each part, express the set in the notation {x : k
(a) {1,3,5.7.9,...}
(b) the set of even integers
(c) the set of irrational numbers
(d) {7.8,9,10}
16. Let A = {I, 2,3}, Which of the following sets are equal
to A?
(a) {0.1,2,3) (b) {3.2, 1}
o) fx: te— NI —3x+2) = 0}

17. In the accompanying figure, let
S = the set of points inside the square
T = the set of points inside the triangle
C = the set of points inside the circle

and let @, b, and ¢ be the points shown. Answer the follow-
ing as true or false.
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18. List all subsets of
(a) {ay.ar, a3} (b) &
19. In each part, sketch on a coordinate line all values of x
that satisfy the stated condition.
(a) x =4 (b) x = -3 ¢c) —1=x=7
(d) x*=9 (&) x* =9 ) x*=9
20. In parts (a)-(d), sketch on a coordinate line all values of x,
if any, that satisfy the stated conditions.
(a) x =4 and xr=<38g
(b)) x =2 or x=35
(€} x>—2 and x=3
(d) x =35 and X7
21. Express in interval notation.
(a) {x:x7 =4} (b) {x:x* >4
22. In each part, sketch the set on a coordinate line,
(a) [=3.2]U[I, 4| (by [4,6]UIK, L]
(c) (—4.0)U(=5.1) (d) [2,4)U(4,7)
(e) [—H,c;m(u.a] () [1,2.3)U (1.4, v2)

(1) TcC (b) TC S
(c)aegT (d)aeg s
ey beTandbheC fyaeCoracT

(g) ceTande ¢ C

w2 %
.// { b | "\I |

e [ ® .I
S I |

i A}

459 a /

R _/'/
N

Figure Ex-17

(g) (=oo, =) U (=3,+%) (h) (==, 35) N[0, +=)

In Exercises 23— 44 solve the inequality and skeu.h the solu-
tion on a coordinate line.

23, 3x -2 <8 24, tx+6=14
25. 445y =3x =17 26. 2x — 1 = 1lx +9
27. 3=4-2x =7 28, —2=3—8x = —11
B il B, s s ol
r —3 8 —x
3x -t 1 5x—3
- e 9 32. 2 5 |
x—2 4+x
4 3
33 <1 34. =32
2.—X x—35
35, x> 9 36. x2 <5

37. x—Hx+2)>0 38. (x -3+ <0
39. % —09x +20<0 40. 2 -3 +7 2 0
2 3 ] 3
41. — = 42. >
x x—4 x4 1 -
43. x* —x* —x—2>0 44, x> —3x+2<0

In Exercises 45 and 46, find all values of x for which the
given expression yields a real number.

= x+42 |
45. Vx2+x -6 FTI
V-1
47. Fahrenheit and Celsius temperatures are related by the for-
mula C = —(F 32). If the temperature in degrees Celsius

ranges over the interval 25 < C < 40 on a certain day, what

is the temperature range in degrees Fahrenheit that day?
48. Every integer is either even or odd. The even integers are

those that are divisible by 2, so a is even if and only if

n = 2k for some integer k. Each odd integer is one unit

larger than an even integer, 50 n is odd if and only if

n = 2k + 1 for some integer k. Show:

(a) Tfn is even, then so is n®

(b) If n is odd, then so is 7.

49. Prove the following results about sums of rational and
irrational numbers:
(a) rational + rational = rational
(b) rational + irrational = irrational.

50. Prove the following results about products of rational and
irrational numbers:
{a) rational - rational = rational
(b} rational - irrational = irrational  (provided the rational

factor is nonzero).

i
—

. Show that the sum or product of two irrational numbers can
be rational or irrational.

h
&)

. Classify the following as rational or irrational and justify
your conclusion. )
@ 3+m b) 3/2
() V82 () V7
{See Exercises 49 and 50.)

53. Prove: The average of two rational numbers is a rational
number, but the average of two irrational numbers can be
rational or irrational.

54, Can a rational number satisly 10* = 37
55. Solve: 8x% —4x? —2x 1 < 0.
56. Solve: 12x* — 2002 = —11x + 2.

57. Prove: If @, b, ¢, and d are positive numbers such thata <b
and ¢ = d, then ae < bd. (This result gives conditions
under which inequalitics can be “multiplied together.”)

58. Is the number represented by the decimal

0.101001000100001000001 . ..

rational or irrational? Explain your reasoning.
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