Department of Mathematics and Statistics

Math 251

Worksheet 8 [Implicit Differentiation with applications]

- 1. Determine a point on the curve $y = \sqrt{1 x^2}$ at which the tangent line will have slope equal to 1.
- 2. In each case determine the equation of the tangent and normal lines of the curve given at the given point.

a.
$$x^3 + y^3 = 9$$
 at the point (2,1).

b.
$$x^4 - x^3y + 2xy^2 - 5 = 0$$
 at the point (-1,2).

c.
$$4x^2 - 3xy + 3y^2 = 25$$
 at the point (-2,1).

d.
$$x^2 + xy + 2y^3 = 4$$
 at the point (-2,1).

e.
$$\tan (xy^2) = \frac{2xy}{\pi}$$
 at the point $\left(-\pi, \frac{1}{2}\right)$.

- 3. Given the curve $y(y^2 1)(y 2) = x(x 1)(x 2)$.
 - a. Determine the x-coordinates of the points on the curve where the tangent line is parallel to the x-axis.
 - b. Find the equation of the tangent line to the curve at (0,1) and at (0,2).
- 4. Two curves are orthogonal exactly when the tangents to each curve at the point of intersection of the curves are at right angles.

a. Show that the curves
$$x^2 - y^2 = 5$$
 and $4x^2 + 9y^2 = 72$ are orthogonal.

- b. Show that $x^2 + y^2 = ax$ and $x^2 + y^2 = by$ are orthogonal families of curves.
- 5. Consider the curve $\sqrt{x} + \sqrt{y} = \sqrt{c}$. Show that the sum of the x-and y-intercepts of any tangent line to the curve is equal to c.