UNIVERSITY OF CALGARY
DEPARTMENT OF MATHEMATICS AND STATISTICS MATHEMATICS 251 - L01 Winter 2009 MIDTERM EXAM A [March 11, 2009 (Wednesday)]

Time: 50 minutes. PLEASE write your Name on the very last page. NO CALCULATORS.
Total Marks $=100$. Work all problems. Marks are shown in brackets.
Student ID:
[Marks]
[10] notations)

1. Find the natural domain of the function $f(x)=\frac{1}{\sqrt{|2 x-7|-3}}$. (Write your answer in interval
2. Evaluate the following limits:
[8]
(a) $\lim _{x \rightarrow 2} \frac{\sqrt{4 x+1}-3}{x-2}$;
(b) $\lim _{x \rightarrow+\infty} \sqrt{\frac{4 x^{3}+2 x-1}{x^{3}-3 x+7}}$
3. Let $f(x)$ be the function defined piecewise by

$$
f(x):=\left\{\begin{array}{ll}
\frac{4}{3 x}-\frac{a}{3}, & \text { if } \quad x<2 \\
1, & \text { if } \quad x=2 \\
\frac{x^{2}-1}{x-a}, & \text { if } \quad x>2
\end{array} .\right.
$$

Write your answer in the space provided (no explanation needed):
(a) The function $f(x)$ is defined at $x=2$ with $f(2)=$ \qquad ;

$$
[2]
$$

(b) $\lim _{x \rightarrow 2^{-}} f(x)=$ \qquad _;
(c) $\lim _{x \rightarrow 2^{+}} f(x)=$ \qquad ;
(d) The function $f(x)$ is continuous at $x=2$ if $a=$ \qquad ; (Hint: $\left.\lim _{x \rightarrow 2} f(x)=f(2)\right)$
(e) The function $f(x)$ has a removable discontinuity at $x=2$ if $a=$ \qquad ;
(f) The function $f(x)$ has an infinite discontinuity at $x=2$ if $a=$ \qquad ;
(h) With the information above, we can conclude that the function is not differentiable at [2] $x=2$ if $a=$ \qquad -.
4. Use techniques of differentiation to find the derivative (do not simplify) $y^{\prime}(x)=\frac{d y}{d x}$ for:

[^0](b) $y=\sqrt{\left(x^{2}+1\right) \sin ^{3}(x)}$.
5. Let $f(x)=\sqrt{5-x}$.
[10]
(a) Find the linear approximation of $f(x)$ at the point $x_{0}=1$.
(b) Use the linear approximation from part (a) to estimate the value of $\sqrt{4.12}$.
(c) What is the error in this approximation if $\sqrt{4.12}=2.029$?
6. Given that $y^{2}+x y=x^{3}$,
(a) Find $y^{\prime}=\frac{d y}{d x}$;
[6]
(b) find the equation of the tangent line to the curve $y^{2}+x y=x^{3}$ at the point $(2,2)$.
[8] 7. Find the (x, y)-coordinates of the point on the graph of the function $f(x)=x^{4}+2 x-1$ where the tangent line is perpendicular to the line $6 y+x-4=0$.

Name:	Student ID:	Marks:

[^0]: (a) $y=\frac{x \tan (x)}{x^{2}+1}$;

