NAME _____

- 1. Suppose that f is differentiable and that there are points a and b such that f(a) = b and f(b) = a. Let k(x) = f(f(f(f(x)))). Show that k'(a) = k'(b).
- 2. Find the derivative of the following
 - (a) $y = 2 \tan^2 2x^2$ (b) $y = \tan(\sec x)$
 - (c) $y = \sqrt{\csc\sqrt{1+x^2}}$
- 3. Find the equation of the tangent line to $y = \tan^2 x$ when $x = \pi/3$.
- 4. For $f(x) = \sec^2 x$ and $g(x) = \tan^2 x$, show that f'(x) = g'(x).
- 5. Suppose that f(0) = 0 and f'(0) = 2. Calculate the derivative of f(f(f(x))) when x = 0.
- 6. Find y' by implicit differentiation if

$$\frac{1}{x} + \frac{1}{y} = xy$$

- 7. What is y' if $\cos xy = x^3 + \tan \sqrt{x^2 + y^2}$?
- 8. What is y'' if $x^2 + 3xy + 4y^2 + 2x 7y + 1 = 0$?
- 9. If $p(x) = (1 + x^9)^{11}$, compute the one hundredth derivative $p^{(100)}(x)$.
- 10. Find the two points where the curve $x^2 + xy + y^2 = 7$ crosses the *x*-axis, and show that the tangents to the curve at these points are parallel. What is the common slope of these tangents?
- 11. For what value of the constants a, b and c does the function

$$f(x) = \begin{cases} x^3 & x \le 1\\ ax^2 + bx + c & x > 1 \end{cases}$$

have a second derivative at x = 1?