1. Using $f(x)=x^{2}-3$, find the first three approximations for $\sqrt{3}$ by Newton's method starting with $x_{0}=2$. How would you estimate $\sqrt[3]{4}$?
2. Compute the limit

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
$$

3. Compute the limit

$$
\lim _{x \rightarrow 0} \frac{9 x-3 \sin 3 x}{5 x^{3}}
$$

4. In L'Hôpital's 1696 textbook, he illustrated his rule by finding the limit

$$
\lim _{x \rightarrow a} \frac{\sqrt{2 a^{3} x-x^{4}}-a \sqrt[3]{a^{2} x}}{a-\sqrt[4]{a x^{3}}}
$$

where $a>0$. Find this limit as well.
5. Find the fourth order Taylor approximation to $\ln x$ about $x=1$. Use this to estimate $\ln 1.1$
6. Find the fourth order Taylor approximation to both $-\ln (1-x)$ and $1 /(1-x)$ about $x=0$, and show that you can find the series for $1 /(1-x)$ by differentiating the series for $-\ln (1-x)$.
7. Evaluate the following sums

$$
\sum_{i=1}^{5} \frac{1}{i} \quad \sum_{i=0}^{5} 2^{i} \quad \sum_{n=3}^{6} n!
$$

8. Show that the sum of the binomial coefficients satisfy

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Hint: use the binomial theorem.

