FINAL Handout
 MATH 253

1. Is the integral convergent?If so eveluate it.
(a) (a) $\int_{-\infty}^{0} x e^{x} d x$
(b) $\int_{0}^{e} \ln x d x$
2. Given $f(x)=\frac{x^{3}}{x+1}$ on the interval $(-\infty,-3]$ show that the inverse exists and find its domain and range
3. Derive the formula for the volume of
(a) a sphere with radius $R \quad\left(V=\frac{4}{3} \pi R^{3}\right)$
(b) a cone with radius R and the height $H \quad\left(V=\frac{1}{3} \pi R^{2} H\right)$
4. Derive the formula for circumference of a circle with radius $R .(c=2 \pi R)$
5. Find the domain of definition of $f(x)=\sqrt{9-x^{2}}$ and then find the antiderivative $F(x)=\int f(x) d x$ - NOT using Tables.(Area of a circle)
6. Approximate $\arcsin \frac{1}{3}$ using the Taylor polynomial of third degree T_{3} centered at 0 .
7. Find the general solution of $x^{2} y^{\prime}-4 y=x^{3} \cdot \ln x \cdot e^{-4 / x}$.
8. Solve the initial value problem

$$
y^{\prime \prime}+6 y^{\prime}+9 y=18 x^{2}, \quad y(0)=\frac{1}{3}, \quad y^{\prime}(0)=3
$$

9. Find the general solution of the differential equation

$$
y^{\prime \prime}+9 y=10 \sin 2 x+e^{-x}
$$

10. Find the domain and antiderivative of the following functions:
(a) $x \arcsin (2 x)$
(b) $\frac{x^{2}+2}{x-x^{2}}$
(c) $x \ln (2 x+3)$
(d) $\frac{1}{\sqrt{e^{x}+1}}$
