FINAL Handout
 MATH 253

1. Derive the formula for the volume of
(a) a shere with radius $R \quad\left(V=\frac{4}{3} \pi R^{3}\right)$
(b) a cone with radius R and the height $H \quad\left(V=\frac{1}{3} \pi R^{2} H\right)$
2. Derive the formula for circumference of a circle with radius $R .(c=2 \pi R)$
3. Find the arclength of the curve $(y-1)^{2}=(1-x)^{3}$ between $P(0,2)$ and $R(1,1)$.
4. Find the domain of definition of $f(x)=\sqrt{9-x^{2}}$ and then find the antiderivative $F(x)=\int f(x) d x$ - NOT using Tables.(Area of a circle)
5. Approximate $\arcsin \frac{1}{3}$ using the Taylor polynomial of third degree T_{3} centered at 0 .
6. Find the general solution of $x^{2} y^{\prime}-4 y=x^{3} \cdot \ln x \cdot e^{-4 / x}$.
7. Solve the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+4 y=8 x^{2}, \quad y(0)=2, \quad y^{\prime}(0)=4 .
$$

8. Find the general solution of the differential equation

$$
y^{\prime \prime}+9 y=10 \sin 2 x+e^{-x}
$$

9. Find the domain and antiderivative of the following functions:
a. $\quad x \arcsin (2 x)$
b. $\frac{x^{2}+2}{x-x^{2}}$
c. $\quad x \ln (2 x+3)$
d. $\frac{1}{\sqrt{e^{x}+1}}$
