## MATH 253 Handout \#1 Solution.

## For 1)

For $x>0 \int \sqrt{x}\left(\frac{5}{\sqrt{x}}-\frac{4}{x^{\frac{3}{2}}}\right) d x=5 \int \frac{\sqrt{x}}{\sqrt{x}} d x-4 \int \frac{\sqrt{x}}{x^{\frac{3}{2}}} d x=$
$=5 \int d x-4 \int x^{-1} d x=5 x-4 \ln x+c, x>0$
For 2)
use substitution $u=\sin x, d u=\cos x d x, \cos ^{2} x=1-\sin ^{2} x$
and if $x=\frac{\pi}{4}$, then $u=\frac{1}{\sqrt{2}}$, and if $x=\frac{\pi}{2}, u=1$, so
$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos ^{3} x}{\sin ^{3} x} d x=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\sin ^{3} x} \cdot \cos x d x=\int_{\frac{1}{\sqrt{2}}}^{1} \frac{\left(1-u^{2}\right)}{u^{3}} d u=\int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{u^{3}} d u-\int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{u} d u=$
$=\left[\frac{u^{-2}}{-2}\right]_{\frac{1}{\sqrt{2}}}^{1}-[\ln |u|]_{\frac{1}{\sqrt{2}}}^{1}=\frac{-1}{2}[1-2]-\left[\ln 1-\ln 2^{-\frac{1}{2}}\right]=\frac{1}{2}-\left[0+\frac{1}{2} \ln 2\right]=\frac{1}{2}-\frac{1}{2} \ln 2$.

## For 3)

$D_{f}=(-\infty, 4]$ since we must have $(4-x) \geq 0$ and $R_{f} \subset(-\infty, 0)$
since the exponential function has always positive values.
now to find the inverse solve for $\mathrm{x}: \quad y=e^{\sqrt{4-x}}$,
if $y$ is positive we can apply $\ln$ to both sides
$\ln y=\sqrt{4-x}$ and again the right-hand side is positive or 0
so IF $\ln y \geq 0$ we can square both sides $(\ln y)^{2}=4-x$ and $x=4-\ln ^{2} y$, finally by interchanging x and y
$y=f^{-1}(x)=4-\ln ^{2} x, D_{f^{-1}}=R_{f}=?$, and $R_{f^{-1}}=D_{f}=(-\infty, 4]$
to get the range of $f$ we have to solve when $\ln y \geq 0$ and that is for $y \geq 1$
from the graph of $\ln$
OR by applying exp. function to the inequality and using $e^{0}=1$
thus $R_{f}=D_{f^{-1}}=[1,+\infty)$.
For 4)
For $x \neq 0 \int \frac{5 x-\sqrt[3]{x}+3}{\sqrt[3]{x}} d x=\int\left(\frac{5 x}{\sqrt[3]{x}}-1+\frac{3}{x^{\frac{1}{3}}}\right) d x=5 \int x^{\frac{2}{3}} d x-\int d x+3 \int x^{-\frac{1}{3}} d x=$ $=5 \cdot \frac{3}{5} x^{\frac{5}{3}}-x+3 \cdot \frac{3}{2} x^{\frac{2}{3}}+c=3 x^{\frac{5}{3}}-x+\frac{9}{2} x^{\frac{2}{3}}+c$.
For 5)
use substitution $u=3-x, d u=-d x, x=3-u$ and $x^{2}=(3-u)^{2}$
if $x=0$, then $u=3$, and if $x=2, u=1$, so
$\int_{0}^{2} \frac{x^{2}}{3-x} d x .=-\int_{3}^{1} \frac{(3-u)^{2}}{u} d u=\int_{1}^{3} \frac{9-6 u+u^{2}}{u} d u=\int_{1}^{3}\left(\frac{9}{u}-6+u\right) d u=$
$=9[\ln u]_{1}^{3}-6[u]_{1}^{3}+\frac{1}{2}\left[u^{2}\right]_{1}^{3}=9[\ln 3-\ln 1]-6[3-1]+\frac{1}{2}[9-1]=9 \ln 3-12+4=9 \ln 3-8$.
For 6)
$D_{f}=(-\infty, 1)$ since we must have $\frac{1}{1-x}>0$ so $1-x>0$ thus $1>x$
and $R_{f}=(-\infty,+\infty)$ since logarithmic function has positive and negative values.
now to find the inverse solve for $\mathrm{x}: \quad y=\ln \frac{1}{1-x}=-\ln (1-x)$,
$-y=\ln (1-x)$ apply exp. function to both sides -possible for any $y$
$\left(\mathrm{OR} e^{y}=\frac{1}{1-x}, \frac{1}{e^{y}}=1-x, e^{-y}=\frac{1}{e^{y}}\right) e^{-y}=1-x$ and $x=1-e^{-y}$
finally by interchanging x and y
$y=f^{-1}(x)=1-e^{-x}, D_{f^{-1}}=R_{f}=(-\infty,+\infty)$, and $R_{f^{-1}}=D_{f}=(-\infty, 1)$.
For 7)
using $\quad(A-B)^{2}=A^{2}-2 A B+B^{2}$
$\int\left(2 \sqrt{x}-\frac{1}{x}\right)^{2} d x=\int 4 x d x-4 \int \frac{\sqrt{x}}{x} d x+\int x^{-2} d x=4 \cdot \frac{x^{2}}{2}-4 \int x^{-\frac{1}{2}} d x-x^{-1}+c=$
$=2 x^{2}-8 x^{\frac{1}{2}}-\frac{1}{x}+c$ for $x>0$

## For 8)

use substitution $u=\frac{1}{x}, d u=-x^{-2} d x$,so $\quad-d u=\frac{d x}{x^{2}}$ and if $x=\frac{1}{2}$, then $u=2$, and if $x=1, u=1 \quad$ so
$\int_{\frac{1}{2}}^{1} \frac{3^{\frac{1}{x}}}{x^{2}} d x=-\int_{2}^{1} 3^{u} d u=\left[\frac{3^{u}}{\ln 3}\right]_{1}^{2}=\frac{1}{\ln 3}[9-3]=\frac{6}{\ln 3} .\left(\right.$ using $\left.-\int_{b}^{a}=\int_{a}^{b}\right)$

## For 9)

$D_{f}=\{x \neq-3\}$ but $R_{f}=$ ?, to find the inverse solve for $\mathrm{x}: ~ y=\frac{1-2 x}{x+3}$
for $x \neq-3 \quad y(x+3)=1-2 x$,so $x y+3 y=1-2 x$, and $\quad x y+2 x=1-3 y$,
so $\quad x(y+2)=1-3 y$.To be able to solve for x we have to assume that $(y+2) \neq 0$,
so $y \neq-2$. Therefore $R_{f}=\{y \neq-2\}$ and we can finish solving : $x=\frac{1-3 y}{y+2}$
$(x \longleftrightarrow y) \quad f^{-1}(x)=\frac{1-3 x}{x+2}, D_{f^{-1}}=R_{f}=\{x \neq-2\}$, and $R_{f^{-1}}=D_{f}=\{y \neq-3\}$.
For 10)
$\int x^{\frac{1}{3}}(2-x) d x=2 \int x^{\frac{1}{3}} d x-\int x \cdot x^{\frac{1}{3}} d x=2 \cdot \frac{3}{4} x^{\frac{4}{3}}-\int x^{\frac{4}{3}} d x=\frac{3}{2} x^{\frac{4}{3}}-\frac{3}{7} x^{\frac{7}{3}}+c$

## For 11)

use substitution $u=x^{2}, d u=2 x d x$, and if $x=-1$, then $u=1$,
and if $x=0, u=0$,so

$$
\int_{-1}^{0} x e^{-x^{2}} d x=\frac{1}{2} \int_{1}^{0} e^{-u} d u=\frac{1}{2}\left[\frac{e^{-u}}{-1}\right]_{1}^{0}=-\frac{1}{2}\left(1-e^{-1}\right)=\frac{1}{2}\left(\frac{1}{e}-1\right)
$$

## For 12)

$D_{f}=[-1,+\infty)$ since we must have $(1+x) \geq 0$ and $R_{f}=(-\infty, 0]$
now to find the inverse solve for x : $y=-\sqrt{1+x}$,
$-y=\sqrt{1+x}$, so $-y$ must be positive or 0
$y \leq 0$ then we can square both sides and $y^{2}=1+x$, and $x=y^{2}-1$
so $f^{-1}(x)=x^{2}-1, D_{f^{-1}}=R_{f}=(-\infty, 0]$, and $R_{f^{-1}}=D_{f}=[-1,+\infty)$

