J. Shen, D. Kinzebulatov

1. Calculate $\int \frac{1}{5+x^2+2x} dx$.. We complete the square: $5+x^2+2x=4+(x+1)^2$. So we can write:

$$\int \frac{1}{5+x^2+2x} dx = \int \frac{1}{4+(x+1)^2} dx =$$

$$= \frac{1}{4} \int \frac{1}{1+\left(\frac{x+1}{2}\right)^2} dx = \frac{1}{2} \arctan\left(\frac{x+1}{2}\right) + C.$$

- 2. (a) Simplify $\tan \left(\arcsin\left(\frac{1}{5}\right)\right)$. If we define $\theta = \arcsin\left(\frac{1}{5}\right)$, then we can draw a right triangle with θ at one vertex and side opposite of 1, hypotenuse of 5. This makes the side adjacent to θ of length $\sqrt{24}$ by Pythagoras. Thus the tangent of θ is $\frac{1}{24}$.
 - (b) Calculate

$$\int \frac{2x}{\sqrt{1 - x^4}} \, dx \, \Big|_{\substack{u = x^2 \\ du = 2x \, dx}} = \int \frac{1}{\sqrt{1 - u^2}} \, du =$$

$$= \arcsin(u) + C = \arcsin(x^2) + C.$$

- 3. Given $f(x) = \arcsin(x-2)$, (a) find the domain and range of f; (b) show f is one-to-one; (c) find a formula for f^{-1} , the inverse of f.
 - (a) The domain of $\arcsin(u)$ is $-1 \le u \le +1$, so we must have $-1 \le x 2 \le +1$, i.e., $1 \le x \le 3$. The range of f is the range of $\arcsin(u)$ for $-1 \le u \le +1$, i.e., $[-\frac{\pi}{2}, \frac{\pi}{2}]$. (b) The derivative of f is

$$f'(x) = \frac{1}{\sqrt{1 - (x - 2)^2}} > 0,$$

so f is one-to-one. It is also correct to observe that the graph of f is just the graph of $\arcsin(u)$ with the y-axis shifted 2 units to the right, so f passes the horizontal line test.

(c) If $y = \arcsin(x-2)$ then $x = 2 + \sin(y)$. Interchanging x and y, $f^{-1}(x) = 2 + \sin(x)$.