Lab Worksheet 1 Solutions, Math 253 B25-32, January 25-29, 2005

J. Shen, D. Kinzebulatov, P. Rozenhart, J. Macki

1. For $f(x) = \ln(5x - 2)$, show f is one-to one. Find a formula for the inverse function $f^{-1}(x)$, as well as its domain and range.

Solution: The domain of f is $(\frac{2}{5}, \infty)$, its range (from sketching $\ln(5) + \ln(x - \frac{2}{5})$, which is just $y = \ln(x)$ shifted vertically by $\ln(5)$ and $\frac{2}{5}$ to the right) is $(-\infty, +\infty) = R$. Thus the domain of f^{-1} is R and the range of f^{-1} is $(\frac{2}{5}, \infty)$. The function is one-to-one by the horizontal line test applied to the graph, or by observing that

$$f'(x) = \frac{5}{5x - 2} > 0$$

on the domain of f, so f is strictly increasing. To find a formula for the inverse, solve the equation $y = \ln(5x - 2)$ for x as a function of y:

$$e^y = 5x - 2 \implies x = \frac{e^y + 2}{5},$$

then interchange x and y to get

$$f^{-1}(x) = \frac{e^x + 2}{5}.$$

2. Simplify each of the following:

(a)
$$\tan \left(\arcsin \left(\frac{1}{3}\right)\right)$$
,

(b)
$$\sin(\arctan(p+1))$$
.

Solution: (a) If $\theta = \arcsin\left(\frac{1}{3}\right)$ then we can draw a right triangle for θ From the triangle we can see that the tangent of θ is $\frac{1}{\sqrt{8}}$.

- (b) is similar, a simple sketch of the relevant right triangle gives the sine as $\frac{p+1}{(p+1)^2+1}$.
- 3. All you know about f(x) is that it is differentiable everywhere, and the following values:

$$f(2) = 10, f(6) = 2, f(10) = 6, f'(2) = 2, f'(6) = 1, f'(10) = -3.$$

What is the derivative of f^{-1} at 6? What is the derivative of $g(x) = [f^{-1}(x)]^2$ at 6? (Hint for last: Chain Rule)

Solution: The derivative of f^{-1} at 6 is just the reciprocal of f'(x) at x = 10, since 10 is the pre-image of 6. Thus the derivative is $-\frac{1}{3}$. The derivative of $[f^{-1}(x)]^2$ is, by the chain rule $2f^{-1}(x)f^{-1}(x)$ which at x = 10 is $2 \cdot 10 \cdot (-\frac{1}{3})$.

4. Evaluate the following integrals:

(a)
$$\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{1 + \sin^2(x)} dx$$
 (b) $\int_1^2 \frac{1}{[2x - x^2]^{\frac{1}{2}}} dx$.

Simplify your answer as much as possible.

Solution: (a) Use the substitution $u = \sin(x)$ to get

$$\int_0^1 \frac{1}{1+u^2} du = \arctan(u)|_0^1 = \frac{\pi}{4}.$$

(b) Complete the square on the bottom to get

$$\int_{1}^{2} \frac{1}{\left[1 - (x - 1)^{2}\right]^{\frac{1}{2}}} dx = \arcsin(x - 1)|_{1}^{2} =$$

$$= \arcsin(1) - \arcsin(0) = \frac{\pi}{2}.$$