J. Macki

Note: I have only proofed these lightly, so there could very well be numerical or other computational errors. However, the general approach will always be correct! If you inform me of errors, I will send you an email to confirm, but there will not be time to post a corrected copy.

1. Domain and range of a function, proving a function is one-to-one, domain and range and derivative of inverse function, formula for inverse function.

Typical Problems:

- (a) If $f(x) = e^{\sqrt{4-x}}$, find the domain and range of f. Show f is one-to-one on its domain. Find a formula for the inverse function f^{-1} .(Handout 1) Solution: See solutions for Handout 1.
- (b) Same as previous problem, for $f(x) = \ln \left[\frac{1}{1-x} \right]$. (Handout 1)
- (c) Same as above for $f(x) = \arcsin(\sqrt{3+x}-2)$ Solution: Domain is [-2, 6], range is $-1 \le x \le +1$. We calculate the derivative:

$$f'(x) = \frac{1}{\left[1 - \left(\sqrt{3+x} - 2\right)^2\right]^{\frac{1}{2}}} \frac{1}{2\sqrt{3+x}}.$$

This is always positive on the domain of f, so the function is strictly increasing, hence one-to-one.

The domain of f^{-1} is the range of f, and the range of f^{-1} is the domain of f. We find the formula for f^{-1} :

$$y = \arcsin(\sqrt{3+x} - 2) \implies \sin(y) = \sqrt{3+x} - 2 \implies x = -3 + [2 + \sin(y)]^2$$
.
Therefore, $f^{-1}(x) = x = -3 + [2 + \sin(x)]^2$.

- 2. Integration by parts. Three topics: Kill a power of x, kill the ugly function, find a recursion formula (reduction formula) for a set of integrals. (Problems from handouts have solutions posted already).
 - (a) Evaluate $\int x (\ln(x))^2 dx$. (Handout 3)
 - (b) Evaluate without Table: $\int_0^{\frac{1}{2}} \arctan(2x) dx$. (Handout 3)
 - (c) Evaluate $\int_{-1}^{0} x^2 e^{3x} dx$ (Handout 3).
 - (d) Given $\int x^n e^{x^2} dx$, n = 0, 1, 2, ..., call these integrals I_n , e.g., $I_3 = \int x^3 e^{x^2} dx$. Show that

$$I_n = \frac{1}{2}x^{n-1}e^{x^2} - \frac{n-1}{2}\int I_{n-2}.$$

Given that $I_1 = \frac{1}{2}e^{x^2} + C$, use this recursion formula to find I_3 and I_5 .

Solution: To prove the formula, use parts with $U(x) = x^{n-1}$ and $dV(x) = xe^{x^2} dx$:

$$I_n = U(x)V(x) - \int V(x)dU(x) = \frac{x^{n-1}e^{x^2}}{2} - \frac{n-1}{2} \int x^{n-2}e^{x^2} dx \implies$$

$$I_n = \frac{x^{n-1}e^{x^2}}{2} - \frac{n-1}{2}I_{n-2}.$$

$$I_3 = \frac{1}{2}x^2e^{x^2} - \frac{1}{2}e^{x^2}, \qquad I_5 = \frac{1}{2}x^4e^{x^2} - 2I_3.$$

- (e) Evaluate without table $\int e^{3x} \sin\left(\frac{x}{3}\right) dx$. (Handout 3)
- 3. Substitution, trig powers, trig substitution, inverse trig functions, completing the square, recognizing logarithms ($\int \frac{f'(x)}{f(x)} dx$), natural variable. Evaluate (Handout 3):

$$\int \frac{1}{2+x^{\frac{1}{3}}} dx.$$

(b)
$$\int_0^{\frac{1}{2}} \frac{2x+1}{4x^2+1} \, dx.$$

$$\int_0^2 x\sqrt{4x - x^2} \, dx.$$

The following are from various sources:

(d)
$$\int \frac{\ln(x)}{x[1+\ln(x)]} dx.$$

Solution: Use substitution with $u = \ln(x)$, $du = \frac{1}{x} dx$.

$$= \int \frac{u}{1+u} du = \int [1 - \frac{1}{1+u}] du = \ln(x) \ln|1 + \ln(x)| + C.$$

(e)
$$\int \tan^2(x) \sec^2(x) \, dx.$$

Solution: Use substitution with $u = \tan(x)$, $du = \sec^2(x) dx$:

$$= \int u^2 \, du = \frac{1}{3} \tan^3(x) + C.$$

$$\int x^2 \arcsin(x) \, dx.$$

Solution: Kill the ugly function with parts: $U(x) = \arcsin(x)$, $dV(x) = x^2 dx$:

$$= \frac{1}{3}x^3 \arcsin(x) - \frac{1}{3} \int \frac{x^3}{\sqrt{1-x^2}} dx.$$

Now use trig substitution with $x = \sin(u)$, $dx = \cos(u) du$:

$$= \frac{1}{3}x^3 \arcsin(x) - \frac{1}{3} \int \sin^3(u) \, du = \frac{1}{3}x^3 \arcsin(x) - \frac{1}{3} \int [1 - \cos^2(u)] \sin(u) \, du.$$

For the remaining integral, use substitution with $w = \cos(u)$, $dw = -\sin(u) du$ to get

$$\frac{1}{3}x^{3}\arcsin(x) + \frac{1}{3}\cos(u) + \frac{1}{9}\cos^{3}(u) + C.$$

Now draw the triangle defined by $x = \sin(u)$ to get

$$= \frac{1}{3}x^3 \arcsin(x) + \frac{1}{3}\sqrt{1-x^2} + +\frac{1}{9}\left[1-x^2\right]^{\frac{3}{2}} + C.$$

(g)

$$\int \frac{e^x}{1 + e^{2x}} \, dx.$$

Solution: Use substitution with $u = e^x$, $du = e^x dx$:

$$= \int \frac{1}{1+u^2} du = \arctan(e^x) + C.$$

(h)

$$\int \frac{e^{2x}}{1+e^x} \, dx.$$

Solution: Use substitution with $u = e^x$, $du = e^x dx$:

$$= \int \frac{u}{1+u} du = \int \left[1 - \frac{1}{1+u} \right] du = u - \ln|1+u| + C = e^x + \ln|1+e^x| + C.$$

(i)

$$\int \cos^2(x) \sin^{101}(x) \, dx.$$

Solution: Error! This problem is a bit too hard for final exam drill. Should have been

$$\int \cos^{100}(x)\sin^3(x)\,dx.$$

For this corrected problem, use substitution with $u = \cos(x)$, $du = -\sin(x) dx$:

$$= -\int u^{100} [1 - u^2] du = -\frac{1}{101} \cos^{101}(x) + \frac{1}{103} \cos^{103}(x) + C.$$

$$\int \frac{1}{[x^2 + 6x + 11]^{\frac{3}{2}}} \, dx.$$

Solution: Complete the square:

$$= \int \frac{1}{[(x+3)^2+2]^{\frac{3}{2}}} dx,$$

then use trig substitution $x + 3 = \sqrt{2}\tan(u)$ to get

$$= \frac{1}{2} \int \cos(u) \, du = \frac{1}{2} \sin(u) + C.$$

We draw the triangle defined by

$$\frac{x+3}{\sqrt{2}} = \tan(u)$$

to get

$$= \frac{1}{2} \frac{x+3}{\sqrt{(x+3)^2+2}} + C.$$

(k)

$$\int \sqrt{1+x-x^2} \, dx.$$

Solution: Complete the square:

$$= \int \sqrt{\frac{3}{4} - (x - \frac{1}{2})^2} \, dx.$$

Now use trig substitution with $x - \frac{1}{2} = \frac{\sqrt{3}}{2}\sin(u)$ to get

$$= \frac{3}{4} \int \cos^2(u) \, du = \frac{3}{8} \int [1 + \cos(2u)] \, du = \frac{3}{8} [u + \frac{1}{2} \sin(2u)] + C,$$

where

$$u = \arcsin\left(\frac{x - \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right).$$

This is an acceptable answer.

See also old quizzes and worksheets and the drill problems in the detailed syllabus.

4. Partial Fractions

Evaluate:

(a)

$$\int \frac{x^3 + x^2 - 2}{(x - 1)^2 (x^2 + 1)} \, dx.$$

Solution: We use partial fractions:

$$\frac{x^3 + x^2 - 2}{(x-1)^2)(x^2 + 1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx + D}{x^2 + 1}.$$

Putting the right side over a common denominator and equating the resulting numerator to the left side numerator, we get

$$x^{3} + x^{2} - 2 = A(x-1)(x^{2}+1) + B(x^{2}+1) + (Cx+D)(x-1)^{2}.$$

Setting x = 1 we see that 0 = 2B, so B = 0, which we insert into the above equation to get

$$x^{3} + x^{2} - 2 = A(x - 1)(x^{2} + 1) + (Cx + D)(x - 1)^{2}.$$

Now equate the coefficients of (say) x^3 , x^2 , and the constant terms to get three equations for the remaining unknowns:

$$1 = A + C$$
, $1 = -A - 2C + D$, $-2 = -A + D$.

Solving, we get:

$$C = -\frac{3}{2}, \quad A = \frac{5}{2}, \quad D = \frac{1}{2}.$$

Thus our integral becomes

$$\int \left[\frac{A}{x-1} + \frac{Cx+D}{x^2+1} \right] dx = \frac{5}{2} \ln|x-1| - \frac{3}{4} \ln(x^2+1) \frac{1}{2} \arctan(x) + C.$$

(b)
$$\int \frac{3x-1}{x(x-1)(x+1)} \, dx.$$

Solution: We use partial fractions:

$$\frac{3x-1}{x(x-1)(x+1)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1} \implies 3x-1 = A(x-1)(x+1) + Bx(x+1) + Cx(x-1),$$

and we can easily solve by substitution successively: x = 0, -1, 1:

$$A = 1, \quad C = 2, \quad B = 1,$$

and our integral becomes

$$\int \left[\frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1} \right] dx =$$

$$= \ln|x| + \ln|x-1| + 2\ln|x+1| + C = \ln\left[|x(x-1)(x+1)^2|\right] + C.$$

5. Improper Integrals

Explain why the integral is improper, and decide whether convergent or divergent:

(a) $\int_0^{\frac{\pi}{2}} \sec^2(x) \, dx.$

Solution: Improper because the integrand is singular (has a vertical asymptote) at $x = \frac{\pi}{2}$. We try to evaluate

$$= \lim_{T \to \frac{\pi}{2} -} \int_0^T \sec^2(x) \, dx = \lim_{T \to \frac{\pi}{2} -} \left[\tan(x) \, |_0^T \right] = \lim_{T \to \frac{\pi}{2} -} \left[\tan(T) \, \right] = +\infty.$$

The integral does not converge.

(b) $\int_0^\infty \sin(x) \, dx.$

Solution: The integral is improper because we are trying to integrate over an unbounded interval.

$$= \lim_{T \to \infty} \int_0^T \sin(x) \, dx = \lim_{T \to \infty} \left[-\cos(T) + 1 \right],$$

and this limit does not exist because $\cos(T)$ oscillates between -1 and +1 as $T \to \infty$.

 $\int_{-1}^{1} \frac{x}{\sqrt{x+1}} \, dx.$

Solution: Improper because the integrand has a vertical asymptote at x = -1.

$$= \lim_{a \to -1+} \int_a^1 \frac{x}{\sqrt{x+1}} \, dx.$$

We use substitution with $x + 1 = u^2$, dx = 2u du:

$$= \lim_{a \to -1+} \int_{\sqrt{a+1}}^{\sqrt{2}} 2 \frac{u(u^2 - 1)}{u} du = 2 \lim_{a \to -1+} \left\{ \left[\frac{1}{3} (x+1)^{\frac{3}{2}} - \sqrt{x+1} \right] \right|_a^1 \right\} =$$

$$= 2 \lim_{a \to -1+} \left\{ \frac{1}{3} 2^{\frac{3}{2}} - \sqrt{2} + \frac{1}{3} (a+1)^{\frac{3}{2}} - \sqrt{a+1} \right\} = \frac{1}{3} 2^{\frac{5}{2}} - 2\sqrt{2}.$$

The integral converges.

 $\int_{1}^{\infty} \frac{1}{x^2 + 1} \, dx.$

Solution: The integral is improper because we are trying to integrate over an unbounded interval.

$$= \lim_{T \to \infty} \int_1^T \frac{1}{1+x^2} dx = \lim_{T \to \infty} \left[\arctan(x) \mid_1^T \right] = \lim_{T \to \infty} \left[\arctan(T) - \frac{\pi}{4} \right] = \frac{\pi}{4}.$$

The integral converges.

- 6. Volume by discs and shells. Consider the region bounded by $y = x + \ln(x)$ and the x-axis, $1 \le x \le e$. Find the volume of the solid obtained by
 - (a) rotating this region about the x-axis, using discs; Solution:

Correction: In the originally posted solutions, I use $f(x) = \ln(x)$ rather than $f(x) = x + \ln(x)$, in all of the solutions in this section. In this corrected posting, the $\ln(x)$ has been replaced by the correct $[x + \ln(x)]$ in all of the solutions, but I did not calculate all of the resulting integrals, just sketched how to evaluate the more difficult ones.

$$V = \pi \int_{1}^{e} [x + \ln(x)]^{2} dx.$$

To evaluate, expand the square and use parts, for example the last integral will be $\int \ln^2(x) dx$ so use parts with $U(x) = \ln^2(x)$, dV(x) = 1 dx:

$$= \pi x \ln^2(x) |_1^e - 2\pi \int_1^e \ln(x) \, dx.$$

Now use parts again with $U(x) = \ln(x)$, dV(x) = 1 dx

$$= \pi e - 2\pi [x \ln(x) - x]|_1^e = \pi e - 2\pi [e - e + 1] = \pi [e - 2].$$

For the integral of $2x \ln(x)$ use parts in the same way.

(b) rotating this region about the y-axis, using shells; Solution:

$$V = 2\pi \int_1^e x[x + \ln(x)] dx.$$

We integrate the one integral of $x \ln(x)$ by parts, with $U(x) = \ln(x)$, dV(x) = x dx to get (for this one integral, the other one is easy):

$$= 2\pi \left[\frac{1}{2}x^2\ln(x) - \frac{1}{4}x^2\right]|_1^e = 2\pi \left[\frac{1}{4}e^2 + \frac{1}{4}\right].$$

(c) rotating this region about the line y = 9, using discs; Solution (set-up only):

$$V = \pi \int_{1}^{1} e \left[9^{2} - (9 - x - \ln(x))^{2} \right] dx$$

(d) rotating this region about the line x = 3, using shells. Solution (set-up only):

$$V = 2\pi \int_{1}^{e} (3-x)[x + \ln(x)] dx.$$

- 7. Arclength and surface area.
 - (a) Write down the integral for the arclength of the curve defined by $x^2y + x = 1$. Solution: Forgot to give an interval. Use $1 \le x \le 3$. We have

$$f(x) = \frac{1-x}{x^2}$$
, $f'(x) = -2x^{-3} + x^{-1} = \frac{x^2-2}{x^3}$.

Then the arclength is

$$s = \int_{1}^{3} \left[1 + \left(\frac{x^{2} - 2}{x^{3}} \right)^{2} \right]^{\frac{1}{2}} dx.$$

(b) Write down the integral for the surface area obtained by rotating the curve from the previous problem about the y-axis.

Solution:

$$\mathcal{A} = 2\pi \int_{1}^{3} x \left[1 + \left(\frac{x^{2} - 2}{x^{3}} \right)^{2} \right]^{\frac{1}{2}} dx.$$

(c) Same as above, but rotate about the line x = -2. Solution:

$$\mathcal{A} = 2\pi \int_{1}^{3} (x+2) \left[1 + \left(\frac{x^{2} - 2}{x^{3}} \right)^{2} \right]^{\frac{1}{2}} dx.$$

(d) Same as above, but rotate about the x-axis. Solution:

$$\mathcal{A} = 2\pi \int_{1}^{3} \frac{1-x}{x^{2}} \left[1 + \left(\frac{x^{2}-2}{x^{3}} \right)^{2} \right]^{\frac{1}{2}} dx.$$

8. Taylor Polynomials (see Handout 5)

Then

(a) Find the Taylor Polynomial $P_3(x)$ about $a = \frac{\pi}{2}$ for $f(x) = \ln(\sin(x))$. Solution: We have

$$f(x) = \ln(\sin(x)), \quad f'(x) = \cot(x), \quad f''(x) = -\csc^2(x), \quad f^{(3)}(x) = 2\csc^2(x)\cot(x),$$
 and we evaluate at $\frac{\pi}{2}$:

$$f\left(\frac{\pi}{2}\right) = 0, \quad f'\left(\frac{\pi}{2}\right) = 0, \quad f''\left(\frac{\pi}{2}\right) = -1, \quad f^{(3)}\left(\frac{\pi}{2}\right) = 0.$$

$$P_3(x) = -\frac{1}{2}\left(x - \frac{\pi}{2}\right)^2.$$

- (b) Derive the Taylor Polynomial of any degree for $f(x) = \sin(x)$ about x = 0. Solution: See your text.
- 9. Ordinary Differential Equations Solve:
 - (a) $y'(x) + y(x)\sin x = \cos(x)\sin(x)$, y(2) = 3. (Handout 5) Solution: See the handout.
 - (b) Find the general solution, in explicit form, of $(x+1)y' + (1+y)x^2 = 0$. (Handout 5)
 - (c) Find the solution, in the simplest form, of the initial value problem $y' = \frac{y}{x-y}$, y(2) = 1. (Handout 5)
 - (d) Find the general solution of y'(x) 2xy(x) = x. (Handout 5)
 - (e) $(x^2 + 1)y' + y = 0$.

Solution: Both linear and separable, can solve either way. Linear:

$$y' + \frac{1}{(x^2 + 1)}y = 0,$$

so the normalized equation has the coefficient of y(x) as

$$a(x) = \frac{1}{(x^2 + 1)}$$
 \Rightarrow $A(x) = \int a(x) dx = \arctan(x),$

and so the integrating factor is

$$e^{A(x)} = e^{\arctan(x)}$$
.

and we multiply the nomalized equation by this I.F.:

$$e^{\arctan(x)}[y' + \frac{1}{(x^2 + 1)}y] = 0 \qquad \Rightarrow \{e^{\arctan(x)}y(x)\}' = 0,$$

so

$$e^{\arctan(x)}y(x) = C$$
 $\Rightarrow y(x) = Ce^{-\arctan(x)}$.

Separable:

$$\frac{y'(x)}{y(x)} = -\frac{1}{(x^2 + 1)} \qquad \Rightarrow \qquad$$

$$\ln(y(x)) = -\arctan(x) + C \quad \Rightarrow \quad y(x) = e^C e^{-\arctan(x)}.$$

(f) $y' - 3y = e^{2x}$, y(0) = 4.

Solution: Linear. Already normalized, with a(x) = -3 so

$$A(x) = -3x \quad e^{A(x)} = e^{-3x}.$$

So we multiply by the integrating factor to get

$$e^{-3x}[y'-3y] = e^{-x} \Rightarrow \{e^{-3x}y(x)\}' = e^{-x} \Rightarrow e^{-3x}y(x) = -e^{-x} + C.$$
 $y(x) = -e^{2x} + Ce^{3x}.$

Setting x = 0 we have y(0) = 4 = -1 + C, so C = 5.

(g)
$$y''(x) - 5y'(x) + 6y(x) = 0$$
.

Solution: Second order linear with constant coefficients. Guess $y(x) = e^{mx}$ to get the characteristic equation:

$$m^2 - 5m + 6 = 0 \implies (m-2)(m-3) = 0 \implies m = 2, 3.$$

So the general solution is

$$y(x) = C_1 e^{2x} + C_2 e^{3x}.$$

(h)
$$y''(x) - 5y'(x) + 6y(x) = 3e^{4x}$$

Solution: We have the general solution of the homogeneous equation (right side zero) from the previous problem. Therefore we need only find one particular solution, $y_p(x)$, which solves the given non-homogeneous equation. We guess $y_p(x) = Ae^{4x}$ and plug this into the equation (factoring out the term e^{4x} which occurs in every term on the left:

$$[16A - 20A + 6A]e^{4x} = 3e^{4x}.$$

Thus $A = \frac{3}{2}$, and the general solution of our equation is

$$y(x) = \frac{3}{2}e^{4x} + C_1e^{2x} + C_2e^{3x}.$$

(i)
$$y''(x) - 5y'(x) + 6y(x) = 2x^2 + 3x - 5$$
.

Solution: Same homogeneous equation as before, only the forcing term (non-homogeneous term) has changed. So now we have to guess $y_p(x) = Ax^2 + Bx + C$. Plugging this into the equation we get:

$$2A - 5[2Ax + B] + 6[Ax^{2} + Bx + C] = 2x^{2} + 3x - 5$$

and we can quickly solve for A, B, and C by equating coefficients of, respectively, x^2 , x and the constant term:

$$A = \frac{1}{3}, \qquad B = \frac{19}{18}, \qquad C = -\frac{7}{108}.$$

Thus the general solution is

$$y(x) = \frac{1}{3}x^2 + \frac{19}{18}x + -\frac{7}{108} + C_1e^{2x} + C_2e^{3x}.$$

(j) y''(x) - 4y'(x) + 4y(x) = 0.

Solution: The characteristic equation is

$$m^2 - 4 = 0$$
 $m = 2, -2.$

Thus the general solution of this homogeneous equation is

$$y(x) = C_1 e^{2x} + C_2 e^{-2x}.$$

(k)
$$2y''(x) - 3y'(x) + 2y(x) = 0$$

Solution: The characteristic equation is

$$2m^2 - 3m + 2 = 0$$
 \Rightarrow $m = \frac{3 \pm \sqrt{9 - 16}}{4}$ \Rightarrow $m = \frac{3}{4} \pm \iota \frac{\sqrt{5}}{4}$.

Then the general solution is

$$y(x) = C_1 e^{\frac{3}{4}x} \cos\left(\frac{\sqrt{5}}{4}x\right) + C_2 e^{\frac{3}{4}x} \sin\left(\frac{\sqrt{5}}{4}x\right) .$$

(1)
$$y''(x) - y(x) = \cos(3x)$$
.

Solution: The characteristic equation for the homogeneous equation is $m^2 - 1 = 0$ so the roots are m = -1 and m = +1. Thus the general solution of the homogeneous equation is $y(x) = C_1 e^{-x} + C_2 e^x$. We guess a particular solution $y_p(x) = A\cos(3x) + B\sin(3x)$ to the nonhomogeneous equation. Plugging this into the equation, we get

$$-9A\cos(3x) - 9B\sin(3x) - A\cos(3x) - B\sin(3x) = \cos(3x).$$

Thus we get two equations by matching the coefficients of cos(3x) and sin(3x), respectively:

$$-9A - A = 1,$$
 $-9B - B = 0$ \Rightarrow $A = \frac{1}{10},$ $B = 0.$

So the general solution of our equation is

$$y(x) = \frac{1}{10}\cos(3x) + C_1e^{-x} + C_2e^x \quad .$$