1. Domain and range of a function, proving a function is one-to-one, domain and range and derivative of inverse function, formula for inverse function.

Typical Problems:

- (a) If $f(x) = e^{\sqrt{4-x}}$, find the domain and range of f. Show f is one-to-one on its domain. Find a formula for the inverse function f^{-1} .(Handout 1)
- (b) Same as previous problem, for $f(x) = \ln \left[\frac{1}{1-x} \right]$. (Handout 1)
- (c) Same as above for $f(x) = \arcsin(\sqrt{3+x}-2)$ (Ans.: Domain is [-2, 6], range is $-1 \le x \le +1$.
- 2. Integration by parts. Three topics: Kill a power of x, kill the ugly function, find a recursion formula (reduction formula) for a set of integrals.
 - (a) Evaluate $\int x (\ln(x))^2 dx$. (Handout 3)
 - (b) Evaluate without Table: $\int_0^{\frac{1}{2}} \arctan(2x) dx$. (Handout 3)
 - (c) Evaluate $\int_{-1}^{0} x^2 e^{3x} dx$ (Handout 3).
 - (d) Given $\int x^n e^{x^2} dx$, n = 0, 1, 2, ..., call these integrals I_n , e.g., $I_3 = \int x^3 e^{x^2} dx$. Show that

$$I_n = \frac{1}{2}x^{n-1}e^{x^2} - \frac{n-1}{2}\int I_{n-2}.$$

Given that $I_1 = \frac{1}{2}e^{x^2} + C$, use this recursion formula to find I_3 and I_5 . (Ans.: To prove the formula, use parts with $U(x) = x^{n-1}$ and $dV(x) = xe^{x^2} dx$.

$$I_3 = \frac{1}{2}x^2e^{x^2} - \frac{1}{2}e^{x^2}, \qquad I_5 = \frac{1}{2}x^4e^{x^2} - 2I_3.$$

- (e) Evaluate without table $\int e^{3x} \sin\left(\frac{x}{3}\right) dx$. (Handout 3)
- 3. Substitution, trig powers, trig substitution, inverse trig functions, completing the square, recognizing logarithms ($\int \frac{f'(x)}{f(x)} dx$), natural variable. Evaluate (Handout 3):

$$\int \frac{1}{2+x^{\frac{1}{3}}} dx.$$

(b)
$$\int_0^{\frac{1}{2}} \frac{2x+1}{4x^2+1} \, dx.$$

$$\int_0^2 x\sqrt{4x - x^2} \, dx.$$

The following are from various sources:

(d)
$$\int \frac{\ln(x)}{x[1+\ln(x)]} dx.$$

(e)
$$\int \tan^2 \sec^2 dx.$$

(f)
$$\int x^2 \arcsin(x) \, dx.$$

$$\int \frac{e^x}{1 + e^{2x}} \, dx.$$

$$\int \frac{e^{2x}}{1+e^x} \, dx.$$

(i)
$$\int \cos^2(x) \sin^{101}(x) \, dx.$$

$$\int \frac{1}{[x^2 + 6x + 11]^{\frac{3}{2}}} dx.$$

$$\int \sqrt{1+x-x^2} \, dx.$$

See also old quizzes and worksheets and the drill problems in the detailed syllabus.

4. Partial Fractions

Evaluate:

(a)
$$\int \frac{x^3 + x^2 - 2}{(x-1)^2(x^2+1)} dx.$$

$$\int \frac{3x-1}{x(x-1)(x+1)} dx.$$

5. Improper Integrals

Explain why the integral is improper, and decide whether convergent or divergent:

(a)

$$\int_0^{\frac{\pi}{2}} \sec^2(x) \, dx.$$

(b)

$$\int_0^\infty \sin(x) \, dx.$$

(c)

$$\int_{-1}^{1} \frac{x}{\sqrt{x+1}} \, dx.$$

(d)

$$\int_{1}^{\infty} \frac{1}{x^2 + 1} \, dx.$$

- 6. Volume by discs and shells. Consider the region bounded by $y = x + \ln(x)$ and the x-axis, $1 \le x \le e$. Find the volume of the solid obtained by
 - (a) rotating this region about the x-axis, using discs;
 - (b) rotating this region about the y-axis, using shells;
 - (c) rotating this region about the line y = 9, using discs;
 - (d) rotating this region about the line x = 3, using shells.
- 7. Arclength and surface area.
 - (a) Write down the integral for the arclength of the curve defined by $x^2y + x = 1$.
 - (b) Write down the integral for the surface area obtained by rotating the curve from the previous problem about the y-axis.
 - (c) Same as above, but rotate about the line x = -2.
 - (d) Same as above, but rotoate about the x-axis.
- 8. Taylor Polynomials (see Handout 5)
 - (a) Find the Taylor Polynomial $P_3(x)$ about $a = \frac{\pi}{2}$ for $f(x) = \ln(\sin(x))$.
 - (b) Derive the Taylor Polynomial of any degree for $f(x) = \sin(x)$ about x = 0.
- 9. Ordinary Differential Equations Solve:
 - (a) $y'(x) + y(x)\sin x = \cos(x)\sin(x)$, y(2) = 3. (Handout 5)
 - (b) Find the general solution, in explicit form, of $(x+1)y' + (1+y)x^2 = 0$. (Handout 5)

- (c) Find the solution, in the simplest form, of the initial value problem $y' = \frac{y}{x-y}$, y(2) = 1. (Handout 5)
- (d) Find the general solution of y'(x) 2xy(x) = x. (Handout 5)
- (e) $(x^2 + 1)y' + y = 0$.
- (f) $y' 3y = e^{2x}$, y(0) = 4.
- (g) y''(x) 5y'(x) + 6y(x) = 0.
- (h) $y''(x) 5y'(x) + 6y(x) = 3e^{4x}$.
- (i) $y''(x) 5y'(x) + 6y(x) = 2x^2 + 3x 5$.
- (j) y''(x) 4y'(x) + 4y(x) = 0.
- (k) 2y''(x) 3y'(x) + 2y(x) = 0
- (1) $y''(x) y(x) = \cos(3x)$.