The University of Calgary
 Department of Mathematics and Statistics
 MATH 253
 Handout \# 2-solution

A

For 1)

\sin function is 2π-periodic and $\sin (\theta \pm \pi)=-\sin \theta$ so
$\sin \left(\frac{17}{6} \pi\right)=-\sin \left(\frac{17}{6} \pi-3 \pi\right)=-\sin \left(\frac{17}{6} \pi-\frac{18}{6} \pi\right)=-\sin \frac{-\pi}{6}=\sin \frac{\pi}{6}$
and $\frac{\pi}{6} \in\left(-\frac{1}{2} \pi, \frac{1}{2} \pi\right)$, and thus $\arcsin \left(\sin \left(\frac{17}{6} \pi\right)=\arcsin \left(\sin \left(\frac{\pi}{6}\right)\right)=\frac{\pi}{6}\right.$
since on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the functions arcsin and sin are inverse and cancel each other.
For 2)
using Chain Rule $f^{\prime}(x)=\frac{1}{1+\left(2 \sqrt{x}-\frac{3}{x}\right)^{2}} \cdot\left(\frac{2}{2 \sqrt{x}}+\frac{3}{x^{2}}\right)=\frac{\frac{1}{\sqrt{x}}+\frac{3}{x^{2}}}{1+4 x-\frac{12}{\sqrt{x}}+\frac{9}{x^{2}}} \cdot \frac{x^{2}}{x^{2}}=$
$=\frac{x^{\frac{3}{2}}+3}{x^{2}+4 x^{3}-12 x^{\frac{3}{2}}+9}$ for the domain $x \neq 0, x \geq 0$, arctan is differentiable everywhere, so together $D_{f^{\prime}}=(0,+\infty)$.

For 3)

First, find the intersection points between two given curves:
$f(x)=2|x|=x+3=g(x)$,
$\pm 2 x=x+3, x=3$, and $x=-1$
now testing which function is the top:
$---{ }_{-1}-----_{x=0}----_{3}--f(0)=0<g(0)=3$
so g is the top and
$A=\int_{-1}^{3}[g(x)-f(x)] d x=\int_{-1}^{3}(x+3-2|x|) d x=\int_{-1}^{3}(x+3) d x-2 \int_{-1}^{3}|x| d x=$
$=\left[\frac{1}{2} x^{2}\right]_{-1}^{3}+[3 x]_{-1}^{3}-2 \int_{-1}^{0}|x| d x-2 \int_{0}^{3}|x| d x=($ since it is easier than integrate $|x|)=$
$=\frac{1}{2}(9-1)+3(3+1)-2 \int_{-1}^{0}(-x) d x-2 \int_{0}^{3} x d x=4+12+\left[x^{2}\right]_{-1}^{0}-\left[x^{2}\right]_{0}^{3}=16-1-9=6$.
B

For 1)

tangent function is $\pi-$ periodic so $\tan (x+2 \pi)=\tan (x)$ and if $x \in\left(-\frac{5}{2} \pi,-\frac{3}{2} \pi\right)$,
$x+2 \pi \in\left(-\frac{1}{2} \pi, \frac{1}{2} \pi\right)$ and $\arctan (\tan (x)=\arctan (\tan (x+2 \pi))=x+2 \pi$,
since on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the functions arctan and tan are inverse and cancel each other.
For 2)
For $x \neq 0$ using Chain Rule :
$f^{\prime}(x)=\frac{1}{\sqrt{1-\left(\frac{2}{x}\right)^{2}}} \cdot \frac{-2}{x^{2}}=\frac{-2 \sqrt{x^{2}}}{x^{2} \sqrt{x^{2}-4}}=\frac{-2|x|}{x^{2} \sqrt{x^{2}-4}}=\frac{-2}{|x| \sqrt{x^{2}-4}}$,
also solve $x^{2}-4>0,(x-2)(x+2)>0$,so by testing $-_{\text {pos }}--_{-2}-{ }_{\text {neg }}--_{2}--_{\text {pos }}-$ $x<-2$ or $x>2$
OR for domain of f^{\prime} solve:
$-1<\frac{2}{x}<1$, for $x>0$, solve $\frac{2}{x}<1,2<x$, for $x<0$, solve $-1<\frac{2}{x},-x>2, x<-2$ $D_{f^{\prime}}=(-\infty,-2) \cup(2,+\infty)$.

For 3)

the given curves are not the graphs of functions so interchange x and y
so $1-y=x^{2}, x+y=1$,or $y=1-x^{2}, y=1-x$.
Now, find the intersection points between two given curves:
$f(x)=1-x=1-x^{2}=g(x)$,
$x^{2}-x=0, x(x-1)=0, x=0$, and $x=1$
now testing which function is the top:
$\square 0----_{x=\frac{1}{2}}----_{1}--f\left(\frac{1}{2}\right)=\frac{1}{2}<g\left(\frac{1}{2}\right)=\frac{3}{4}$
so g is the top and
$A=\int_{0}^{1}[g(x)-f(x)] d x=\int_{0}^{1}\left(1-x^{2}-1+x\right) d x=\int_{0}^{1}\left(x-x^{2}\right) d x=$
${ }_{\mathbf{C}}=\left[\frac{1}{2} x^{2}\right]_{0}^{1}-\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{2}-\frac{1}{3}=\frac{3-2}{6}=\frac{1}{6}$.

For 1)

tangent function is $\pi-$ periodic so $\tan \left(-\frac{3}{4} \pi\right)=\tan \left(-\frac{3}{4} \pi+\pi\right)=\tan \left(\frac{1}{4} \pi\right)$
and since $\frac{1}{4} \pi \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the functions arctan and tan are inverse and
cancel each other so $\arctan \left(\tan \left(-\frac{3}{4} \pi\right)\right)=\arctan \left(\tan \frac{\pi}{4}\right)=\frac{\pi}{4}$
Or $\tan \frac{-3 \pi}{4}=\tan \frac{\pi}{4}=1$ and $\arctan 1=\frac{\pi}{4}$

For 2)

using Chain Rule $: f^{\prime}(x)=\frac{1}{\sqrt{1-(\sqrt{x+3}-2)^{2}}} \cdot \frac{1}{2 \sqrt{x+3}}=\frac{1}{2 \sqrt{x+3} \sqrt{4 \sqrt{x+3}-x-6}}$
for domain of f^{\prime} solve:
$x+3>0$ and $-1<\sqrt{x+3}-2<1$,so $x>-3$ and $1<\sqrt{x+3}<3$,
$1<x+3<9$ and $x>-3$, thus $-2<x<6$,so $D_{f^{\prime}}=(-2,6)$.

For 3)

first find the intersection points between two given curves:
$f(x)=3 x-3=1-x^{2}=g(x)$,
$x^{2}+3 x-4=0,(x+4) \cdot(x-1)=0, x=-4$, and $x=1$
now testing which function is the top:
$-{ }_{-4}-----_{x=0}----_{1}--f(0)=-3<g(0)=1$
so g is the top and

$$
\begin{aligned}
& A=\int_{-4}^{1}[g(x)-f(x)] d x=\int_{-4}^{1}\left(1-x^{2}-3 x+3\right) d x=\int_{-4}^{1}\left(4-x^{2}-3 x\right) d x= \\
& =4 \cdot(1+4)-\left[\frac{x^{3}}{3}\right]_{-4}^{1}-\frac{3}{2}\left[x^{2}\right]_{-4}^{1}=20-\frac{1}{3} \cdot\left(1+4^{3}\right)-\frac{3}{2} \cdot(1-16)= \\
& =20-\frac{65}{3}+\frac{45}{2}=\frac{125}{6}
\end{aligned}
$$

D

For 1)
$\cos ^{2} \theta+\sin ^{2} \theta=1 \quad 1+\tan ^{2} \theta=\frac{1}{\cos ^{2} \theta}$ so
$\cos ^{2} \theta=\frac{1}{1+\tan ^{2} \theta}$ and for $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cos \theta=\frac{1}{\sqrt{1+\tan ^{2} \theta}}$ (positive)
for any $x \quad \arctan x=\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
so $\cos (\arctan x)=\frac{1}{\sqrt{1+\left[\tan (\arctan x]^{2}\right.}}=\frac{1}{\sqrt{1+x^{2}}}$
since tan always cancels arctan.

For 2)

using Chain Rule $f^{\prime}(x)=\frac{1}{1+\left(1-\frac{2}{x^{2}}\right)^{2}} \cdot\left(\frac{4}{x^{3}}\right)=\frac{4}{x^{3}\left(1+1-\frac{4}{x^{2}}+\frac{4}{x^{4}}\right)} \cdot \frac{x}{x}=\frac{4 x}{2 x^{4}-4 x^{2}+4}$
for $x \neq 0$, arctan is differentiable everywhere,so
$D_{f^{\prime}}=(-\infty, 0) \cup(0,+\infty)$.

For 3)

First, find the intersection points between two given curves:
$f(x)=x^{\frac{1}{3}}=x=g(x)$,
so $x=x^{3}, x=0$ and $x^{2}=1$,thus $x= \pm 1$
now testing which function is the top:
$\square_{-1}--_{x=-\frac{1}{8}}---_{0}--_{x=\frac{1}{8}}--_{3}--f\left(-\frac{1}{8}\right)=-\frac{1}{2}<g\left(-\frac{1}{8}\right)=-\frac{1}{8}$
so g is the top on $(-1,0)$,
but $f\left(\frac{1}{8}\right)=\frac{1}{2}>g\left(\frac{1}{8}\right)=\frac{1}{8}$ so f is the top on $(0,1)$

$$
\begin{aligned}
& A=\int_{-1}^{0}[g(x)-f(x)] d x+\int_{0}^{1}[f(x)-g(x)] d x=\int_{-1}^{0}\left(x-x^{\frac{1}{3}}\right) d x+\int_{0}^{1}\left(x^{\frac{1}{3}}-x\right) d x= \\
& =\left[\frac{1}{2} x^{2}\right]_{-1}^{0}-\left[\frac{3}{4} x^{\frac{4}{3}}\right]_{-1}^{0}+\left[\frac{3}{4} x^{\frac{4}{3}}\right]_{0}^{1}-\left[\frac{1}{2} x^{2}\right]_{-1}^{0}=-\frac{1}{2}+\frac{3}{4}+\frac{3}{4}-\frac{1}{2}=\frac{1}{2} .
\end{aligned}
$$

$B_{3} \quad x \leftrightarrow y$

c_{3}

