Α

I.Find the trapezoid approximation of
$$\int_{0}^{2} \frac{1}{1+x^2} dx$$
 for $n = 4$.
Can you calculate the integral exactly?

Can you calculate the integral exactly?

2.Find the volume of the solid obtained by rotating the region D around y-axis, where D is the region bounded by curves y = ⁶/_x, x = 2, x = 3, y = 2.
3.Find the arclength of the curve y = ln(sin x) between x = ^π/₄ and x = ^π/₂.

B 1.Find midpoint approximation of $\int_{1}^{3} \frac{1}{x-4} dx$ for n = 3.

Use it to approximate $\ln 3$.

2. Find the volume of the solid obtained by rotating the triangle T with vertices at the points (1, 1), (1, -2) and (2, 0) around y-axis.

3. Find the length of the curve $y^3 = x^2$ between points O(0,0) and P(8,4). C

1. Find midpoint approximation of $\int_{1}^{3} \frac{1}{x} dx$ for n = 4. Can you calculate the error?

2...Find the volume of the solid obtained by rotating the region D around x-axis, where D is in the first quadrant below the graph of $y = 2 - x^2$ and above the line y = x.

3. Find the length of the part of the circle $x^2 + y^2 = 5$ between points Q(2, 1) and P(1, 2).

\mathbf{D}

1. Find the trapezoid approximation of $\int_{1}^{2} \frac{1}{x^2} dx$ for n = 3.

Can you calculate the error?

2. Find the volume of the solid obtained by rotating the region D around x-axis, where D is the region bounded by the graph of $y = \frac{2}{x}$ and the lines $x = \frac{1}{2}, x = 1, y = 4$.

3. Find the length of the curve $y^2 = x^3$ between points O(0,0) and P(4,-8).