MATH 253 HANDOUT \#4

A
1.Find the trapezoid approximation of $\int_{0}^{2} \frac{1}{1+x^{2}} d x$ for $n=4$.

Can you calculate the integral exactly?
2.Find the volume of the solid obtained by rotating the region D around y -axis, where D is the region bounded by curves $y=\frac{6}{x}, x=2, x=3, y=2$.
3.Find the arclength of the curve $\quad y=\ln (\sin x)$ between $x=\frac{\pi}{4}$ and $x=\frac{\pi}{2}$. B
1.Find midpoint approximation of $\int_{1}^{3} \frac{1}{x-4} d x$ for $n=3$.

Use it to approximate $\ln 3$.
2.Find the volume of the solid obtained by rotating the triangle T with vertices at the points $(1,1),(1,-2)$ and $(2,0)$ around y-axis.
3.Find the length of the curve $\quad y^{3}=x^{2}$ between points $\mathrm{O}(0,0)$ and $P(8,4)$. C
1.Find midpoint approximation of $\int_{1}^{3} \frac{1}{x} d x$ for $n=4$.Can you calculate the error?
2..Find the volume of the solid obtained by rotating the region D around x-axis, where D is in the first quadrant below the graph of $y=2-x^{2}$ and above the line $y=x$.
3.Find the length of the part of the circle $\quad x^{2}+y^{2}=5$ between points $Q(2,1)$ and $P(1,2)$.
D

1. Find the trapezoid approximation of $\int_{1}^{2} \frac{1}{x^{2}} d x$ for $n=3$.

Can you calculate the error?
2. Find the volume of the solid obtained by rotating the region D around x -axis, where D is the region bounded by the graph of $y=\frac{2}{x}$
and the lines $x=\frac{1}{2}, x=1, y=4$.
3.Find the length of the curve $\quad y^{2}=x^{3}$ between points $\mathrm{O}(0,0)$ and $P(4,-8)$.

