MATH 253

Handout \# 5
A

1. Solve $y^{\prime}+y \sin x=\cos x \sin x, y\left(\frac{\pi}{2}\right)=3$.
2. Find the Taylor polynomial of degree 3 of $f(x)=\ln (3 x-2)$ around $x_{0}=1$, then use it to approximate $\ln 2$.
3. Find the general solution, in the explicitt form, of $(x+1) y^{\prime}+(1+y) x^{2}=0$.
4. Find the solution, in the simpliest form, of the initial value problem $y^{\prime}=\frac{y}{x-y} \quad y(-2)=1$.

B

1.Find theTaylor polynomial degree 2 of $f(x)=e^{1-4 x^{2}}$ around $x_{0}=\frac{1}{2}$,
then use it to approximate $e^{\frac{3}{4}}$.
2. Find the general solution of $y^{\prime}-2 x y=x$.
3. Find the general solution, in the explicit form, of $\left(x^{2}+1\right) y^{\prime}+2(1+y) x^{2}=0$.
4. Find the general solution, in the simpliest form, of

$$
y^{\prime}=\frac{y}{x+y}
$$

C

1. Find the Taylor polynomial of degree 3 of $f(x)=\arctan (3 x)$ around $x_{0}=0$, then use it to approximate $\pi=4 \arctan 1$.
2. Find the general solution of $x y^{\prime}=x^{2}+y$.
3. Find the general solution, in the simpliest form, $(x+y) y^{\prime}+y-3 x=0$.
4. Find the explicit solution of the initial value problem
$x \sin y+y^{\prime}\left(x^{2}+1\right) \cos y=0, y(0)=-\frac{\pi}{2}$.

D

1. Solve $y^{\prime}-y=e^{x} \ln x, y(1)=-1$.
2. Find the Taylor polynomial of degree 3 of $f(x)=e^{1-x^{2}}$ around $x_{0}=-1$, then use it to approximate $e^{\frac{3}{4}}$.
3. Solve the initial value problem $y y^{\prime}=2 y-x, y(1)=0$.

Can you find a solution satisfying $y(0)=0$?
4. Find the general solution of $x \ln x \cdot y^{\prime}=y$.

