J. Macki, P. Rozenhart

1.
$$\int \frac{1}{x^2 + 6x + 10} dx = \int \frac{1}{1 + (x+3)^2} dx = \arctan(x+3) + C.$$

- 2.(a) Simplify $\sin(\arctan(5))$. If we define $\theta = \arctan(5)$, then we can draw a right triangle with θ at a vertex, side opposite of 5 and side adjacent of 1. Then the hypotenuse has length $\sqrt{26}$, and the $\sin(\theta) = \frac{5}{\sqrt{26}}$.
- (b) Evaluate

$$\int_{1}^{e} \frac{1}{x\sqrt{1 - \left[\ln(x)\right]^{2}}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} 1 dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} dx \Big|_{\substack{u = \ln(x) \\ du = \frac{1}{x}, dx}} = \int_{1}^{1} \frac{1}{x^{2}} d$$

$$= \int_0^1 \frac{1}{\sqrt{1 - u^2}} du = \arcsin(u) \,|_0^1 = \frac{\pi}{2}.$$

Students need not change limits if they switch back to x at the end. They should be able to see that the value is $\frac{\pi}{2}$, if not take off one point.

- 3. (a) Given $f(x) = \arcsin(x+2)$, find the domain and range of f, and show f is one-to-one on its domain. Find a formula for f^{-1} .
- (b) Same as (a), but now the function is $g(x) = \ln(\arcsin(x+2))$.
- (a) The domain of $\arcsin(u)$ is $-1 \le u \le +1$, so we need to restrict x by $-1 \le x + 2 \le +1$. Thus the domain of f is [-3, -1]. The range is the full range of arcsin, i.e., $[-\frac{\pi}{2}, \frac{\pi}{2}]$. The derivative of f is

$$f'(x) = \frac{1}{\sqrt{1 - (x+2)^2}} > 0,$$

so f is one-to-one. If we set $y = \arcsin(x+2)$, then $x = -2 + \sin(y)$, so $f^{-1}(x) = -2 + \sin(x)$. (b) We now must have $\arcsin(x+2) > 0$ in order to compute the ln. This means that we must restrict x so that $0 < x + 2 \le +1$. Thus the domain of g is (-2, -1]. The range of g is the corresponding range of $\ln(\arcsin(u))$ when $0 < u \le +1$, i.e., the range of $\ln(u)$ when $0 < w \le \frac{\pi}{2}$. Thus the range of g is the interval $(-\infty, \ln(\frac{\pi}{2})]$. If we set $y = \ln(\arcsin(x+2))$, then

$$e^y = \arcsin(x+2)$$
, so $\sin(e^y) = x+2$, and $x = -2 + \sin(e^y)$.

Interchanging x and y, we have

$$g^{-1}(x) = -2 + \sin(e^x).$$