[6] 1. Use the Euclidean algorithm to find $\operatorname{gcd}(100,43)$. Then use your work to write $\operatorname{gcd}(100,43)$ in the form $100 a+43 b$ where a and b are integers.

We get

$$
\begin{aligned}
100 & =2 \cdot 43+14 \\
43 & =3 \cdot 14+1 \\
14 & =14 \cdot 1+0
\end{aligned}
$$

so $\operatorname{gcd}(100,43)=1$. Therefore we get

$$
1=43-3 \cdot 14=43-3(100-2 \cdot 43)=43-3 \cdot 100+6 \cdot 43=7 \cdot 43-3 \cdot 100 .
$$

Alternatively we could use the "table method", getting

		100	43
	100	1	0
$R 1-2 R 2$	43	0	1
$R 2-3 R 3$	1	1	-2
R	7		

Therefore $\operatorname{gcd}(100,43)=1$ and $1=-3(100)+7(43)$.
[7] 2. Let \mathcal{S} be the following statement:
for all reals n, if n^{2} is irrational then n is irrational.
(a) Prove statement \mathcal{S}. Use contradiction or the contrapositive. Use only the definitions of rational and irrational.

Using contradiction: Assume that n is an arbitrary real number so that n^{2} is irrational. We want to prove that n is irrational. To get a contradiction, assume that n is rational. By definition this means that $n=a / b$ for some $a, b \in \mathbb{Z}(b \neq 0)$. Then $n^{2}=(a / b)^{2}=a^{2} / b^{2}$, where a^{2} and b^{2} are integers since $a, b \in \mathbb{Z}$ (and $\left.b^{2} \neq 0\right)$. Thus by definition n^{2} is rational, which contradicts our assumption that n^{2} is irrational. Therefore n must be irrational.

Using the contrapositive: The contrapositive is:
for all reals n, if n is rational then n^{2} is rational.
So to prove this, assume that n is an arbitrary rational number. We want to prove that n^{2} is rational. By definition our assumption means that $n=a / b$ for some $a, b \in \mathbb{Z}(b \neq 0)$. Then $n^{2}=(a / b)^{2}=a^{2} / b^{2}$, where a^{2} and b^{2} are integers since $a, b \in \mathbb{Z}$ (and $b^{2} \neq 0$). Thus by definition n^{2} is rational.
(b) Write (as simply as possible) the negation of statement \mathcal{S}.

It is: there exists a real n such that n^{2} is irrational and n is rational.
[10] 3. Of the following four statements, three are true and one is false. Prove the true statements and disprove the false statement. \mathbb{Z} denotes the set of all integers.
(a) $\exists A \subseteq \mathbb{Z}$ so that $A-\{1\}=A-\{2\}$.

This statement is true. An example is $A=\emptyset$. Then $A-\{1\}=\emptyset$ and $A-\{2\}=\emptyset$, so $A-\{1\}=A-\{2\}$. [We could also use any set A not containing 1 or 2.]
(b) $\exists A \subseteq \mathbb{Z}$ so that $A \cup\{1\}=A \cup\{2\}$.

This statement is true. An example is $A=\{1,2\}$. Then $A \cup\{1\}=\{1,2\}$ and $A \cup\{2\}=\{1,2\}$, so $A \cup\{1\}=A \cup\{2\}$. [We could also use any set A containing both 1 and 2.]
(c) $\forall A \subseteq \mathbb{Z} \exists B \subseteq \mathbb{Z}$ so that $A-\{1\}=B-\{2\}$.

This statement is false. A counterexample is $A=\{2\}$. Then $A-\{1\}=\{2\}$, while for any set B we would have $2 \notin B-\{2\}$, so there cannot exist a set B so that $A-\{1\}$ will equal $B-\{2\}$. [We could also use any set A containing 2.]
(d) $\forall A \subseteq \mathbb{Z} \exists B \subseteq \mathbb{Z}$ so that $A \cap\{1\}=B-\{2\}$.

This statement is true. We prove it using two cases. Let A be an arbitrary subset of \mathbb{Z}.

Case (i). If $1 \in A$ then let $B=\{1\}$. Then $A \cap\{1\}=\{1\}$ and $B-\{2\}=\{1\}$, so $A \cap\{1\}=B-\{2\}$. [We could also use $B=\{1,2\}$.]

Case (ii): If $1 \notin A$ then let $B=\emptyset$. Then $A \cap\{1\}=\emptyset$ and $B-\{2\}=\emptyset$, so again $A \cap\{1\}=B-\{2\}$. [We could also use $B=\{2\}$.]
[11] 4 . Let \mathcal{S} be the statement:
for all integers a and b, if $2 \mid a$ and $3 \mid b$, then $6 \mid(a b)$.
(a) Is \mathcal{S} true? Give a proof or disproof.

Yes, \mathcal{S} is true. Here is a proof. Let $a, b \in \mathbb{Z}$ be arbitrary so that $2 \mid a$ and $3 \mid b$. This means that $a=2 k$ and $b=3 \ell$ for some $k, \ell \in \mathbb{Z}$. So $a b=(2 k)(3 \ell)=6 k \ell$, where $k \ell$ is an integer since both k and ℓ are integers. Therefore $6 \mid(a b)$.
(b) Write out (as simply as possible) the contrapositive of statement \mathcal{S}, and give a proof or disproof.

The contrapositive is:
for all integers a and b, if $6 \not \backslash(a b)$, then $2 \not \backslash a$ OR $3 \not \backslash b$.
The contrapositive is true, because it is equivalent to the original statement \mathcal{S} which is true.
(c) Write out (as simply as possible) the converse of statement \mathcal{S}, and give a proof or disproof.

The converse is:
for all integers a and b, if $6 \mid(a b)$, then $2 \mid a$ and $3 \mid b$.

The converse is false. A counterexample is $a=6, b=1$. Then $a b=6$, so $6 \mid(a b)$, but $3 \nmid b$. Another counterexample is $a=3$ and $b=2$; then $a b=6$ so $6 \mid(a b)$, but neither $2 \mid a$ nor $3 \mid b$ is true.
[6] 5. The sequence $x_{0}, x_{1}, x_{2}, \ldots$ is defined by:

$$
x_{0}=1, \text { and } x_{n}=2 x_{n-1}-3 n \text { for all integers } n \geq 1
$$

Prove using mathematical induction that $x_{n}=6+3 n-5\left(2^{n}\right)$ for all integers $n \geq 0$.
Basis Step. When $n=0$ the statement says $x_{0}=6+3 \cdot 0-5\left(2^{0}\right)=6+0-5=1$, which is true.
Inductive Step. Assume that $x_{k}=6+3 k-5\left(2^{k}\right)$ for some integer $k \geq 0$. We want to prove that $x_{k+1}=6+3(k+1)-5\left(2^{k+1}\right)$. Well,

$$
\begin{aligned}
x_{k+1} & =2 x_{k}-3(k+1) \text { by the given recursion } \\
& =2\left[6+3 k-5\left(2^{k}\right)\right]-3 k-3 \text { by assumption } \\
& =12+6 k-5\left(2^{k+1}\right)-3 k-3 \\
& =9+3 k-5\left(2^{k+1}\right) \\
& =6+3(k+1)-5\left(2^{k+1}\right)
\end{aligned}
$$

so the Inductive Step is proved.
Therefore $x_{n}=6+3 n-5\left(2^{n}\right)$ for all integers $n \geq 0$.
[40]

