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MATHEMATICS 271 MIDTERM March 8, 2007

[6] 1. Use the Euclidean algorithm to find gcd(100, 43). Then use your work to write
gcd(100, 43) in the form 100a + 43b where a and b are integers.

We get

100 = 2 · 43 + 14,

43 = 3 · 14 + 1,

14 = 14 · 1 + 0,

so gcd(100, 43) = 1. Therefore we get

1 = 43− 3 · 14 = 43− 3(100− 2 · 43) = 43− 3 · 100 + 6 · 43 = 7 · 43− 3 · 100.

Alternatively we could use the “table method”, getting

100 43
100 1 0
43 0 1

R1− 2R2 14 1 −2
R2− 3R3 1 −3 7

Therefore gcd(100, 43) = 1 and 1 = −3(100) + 7(43).

[7] 2. Let S be the following statement:

for all reals n, if n2 is irrational then n is irrational.

(a) Prove statement S. Use contradiction or the contrapositive. Use only the definitions
of rational and irrational.

Using contradiction: Assume that n is an arbitrary real number so that n2 is irrational.
We want to prove that n is irrational. To get a contradiction, assume that n is rational.
By definition this means that n = a/b for some a, b ∈ Z (b 6= 0). Then n2 = (a/b)2 = a2/b2,
where a2 and b2 are integers since a, b ∈ Z (and b2 6= 0). Thus by definition n2 is rational,
which contradicts our assumption that n2 is irrational. Therefore n must be irrational.

Using the contrapositive: The contrapositive is:

for all reals n, if n is rational then n2 is rational.

So to prove this, assume that n is an arbitrary rational number. We want to prove that
n2 is rational. By definition our assumption means that n = a/b for some a, b ∈ Z (b 6= 0).
Then n2 = (a/b)2 = a2/b2, where a2 and b2 are integers since a, b ∈ Z (and b2 6= 0). Thus
by definition n2 is rational.

(b) Write (as simply as possible) the negation of statement S.

It is: there exists a real n such that n2 is irrational and n is rational.
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[10] 3. Of the following four statements, three are true and one is false. Prove the true
statements and disprove the false statement. Z denotes the set of all integers.

(a) ∃A ⊆ Z so that A− {1} = A− {2}.

This statement is true. An example is A = ∅. Then A− {1} = ∅ and A− {2} = ∅, so
A− {1} = A− {2}. [We could also use any set A not containing 1 or 2.]

(b) ∃A ⊆ Z so that A ∪ {1} = A ∪ {2}.

This statement is true. An example is A = {1, 2}. Then A ∪ {1} = {1, 2} and
A ∪ {2} = {1, 2}, so A ∪ {1} = A ∪ {2}. [We could also use any set A containing both 1
and 2.]

(c) ∀A ⊆ Z ∃B ⊆ Z so that A− {1} = B − {2}.

This statement is false. A counterexample is A = {2}. Then A− {1} = {2}, while for
any set B we would have 2 6∈ B − {2}, so there cannot exist a set B so that A− {1} will
equal B − {2}. [We could also use any set A containing 2.]

(d) ∀A ⊆ Z ∃B ⊆ Z so that A ∩ {1} = B − {2}.

This statement is true. We prove it using two cases. Let A be an arbitrary subset of
Z.

Case (i). If 1 ∈ A then let B = {1}. Then A ∩ {1} = {1} and B − {2} = {1}, so
A ∩ {1} = B − {2}. [We could also use B = {1, 2}.]

Case (ii): If 1 6∈ A then let B = ∅. Then A ∩ {1} = ∅ and B − {2} = ∅, so again
A ∩ {1} = B − {2}. [We could also use B = {2}.]

[11] 4. Let S be the statement:

for all integers a and b, if 2|a and 3|b, then 6|(ab).

(a) Is S true? Give a proof or disproof.

Yes, S is true. Here is a proof. Let a, b ∈ Z be arbitrary so that 2|a and 3|b. This
means that a = 2k and b = 3` for some k, ` ∈ Z. So ab = (2k)(3`) = 6k`, where k` is an
integer since both k and ` are integers. Therefore 6|(ab).

(b) Write out (as simply as possible) the contrapositive of statement S, and give a proof
or disproof.

The contrapositive is:

for all integers a and b, if 6 6 | (ab), then 2 6 | a OR 3 6 | b.
The contrapositive is true, because it is equivalent to the original statement S which is
true.

(c) Write out (as simply as possible) the converse of statement S, and give a proof or
disproof.

The converse is:

for all integers a and b, if 6|(ab), then 2|a and 3|b.
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The converse is false. A counterexample is a = 6, b = 1. Then ab = 6, so 6|(ab), but 3 6 | b.
Another counterexample is a = 3 and b = 2; then ab = 6 so 6|(ab), but neither 2|a nor 3|b
is true.

[6] 5. The sequence x0, x1, x2, . . . is defined by:

x0 = 1, and xn = 2xn−1 − 3n for all integers n ≥ 1.

Prove using mathematical induction that xn = 6 + 3n− 5(2n) for all integers n ≥ 0.

Basis Step. When n = 0 the statement says x0 = 6 + 3 · 0− 5(20) = 6 + 0− 5 = 1, which
is true.

Inductive Step. Assume that xk = 6+3k−5(2k) for some integer k ≥ 0. We want to prove
that xk+1 = 6 + 3(k + 1)− 5(2k+1). Well,

xk+1 = 2xk − 3(k + 1) by the given recursion

= 2[6 + 3k − 5(2k)]− 3k − 3 by assumption

= 12 + 6k − 5(2k+1)− 3k − 3

= 9 + 3k − 5(2k+1)

= 6 + 3(k + 1)− 5(2k+1),

so the Inductive Step is proved.

Therefore xn = 6 + 3n− 5(2n) for all integers n ≥ 0.

[40]


