THE UNIVERSITY OF CALGARY
FACULTY OF SCIENCE
MATHEMATICS 271 (L01, L02)
FINAL EXAMINATION, WINTER 2008
TIME: 3 HOURS

NAME \qquad ID \qquad Section

1	
2	
3	
4	
5	
6	
7	
8	
Total (max. 80)	

SHOW ALL WORK. NO CALCULATORS PLEASE.

THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [80]. THIS EXAM HAS 9 PAGES INCLUDING THIS ONE.
[8] 1. (a) Use the Euclidean algorithm to find $\operatorname{gcd}(102,43)$. Also use the algorithm to find integers x and y such that $\operatorname{gcd}(102,43)=102 x+43 y$.
(b) Use part (a) to find an inverse a for 43 modulo 102 so that $0 \leq a \leq 101$; that is, find an integer $a \in\{0,1, \ldots, 101\}$ so that $43 a \equiv 1 \quad(\bmod 102)$.
[11] $2 . \mathbb{Z}$ is the set of all integers. Let S be the statement:
$\forall n \in \mathbb{Z}$, if $2 \mid n$ and $6 \mid n$, then $12 \mid n$.
(a) Is S true? Give a proof or disproof.
(b) Write out the converse of statement S. Is it true or false? Explain.
(c) Write out the contrapositive of statement S. Is it true or false? Explain.
[12] 3. Let \mathbb{R} be the set of all real numbers, and define the relation R on \mathbb{R} by: for all $x, y \in \mathbb{R}, x R y$ if and only if $x y$ is an integer.
(a) Is R reflexive? Symmetric? Transitive? Give reasons.
(b) Prove or disprove: $\forall x \in \mathbb{R} \exists y \in \mathbb{R}$ so that $x R y$.
(c) Prove or disprove: $\forall x \in \mathbb{R} \exists y \in \mathbb{R}$ so that $x R y$ but $x R(y+1)$ (that is, x is not related to $y+1$).
[9] 4. Let \mathcal{F} denote the set of all functions from $\{1,2,3\}$ to $\{1,2,3\}$.
(a) Prove or disprove the following statement: $\forall f \in \mathcal{F}$, if $(f \circ f)(1)=1$ then $f(1)=1$.
(b) Write out the negation of the statement in part (a).
(c) Find the number of functions $f \in \mathcal{F}$ such that $(f \circ f)(1)=1$. Explain.
(d) Find the number of one-to-one onto functions $f \in \mathcal{F}$ so that $f(1)=2$ and $f^{-1}(2)=3$. Explain.
[15] 5. Let $S=\{1,2, \ldots, 10\}$. Define a relation \mathcal{R} on the power set $\mathcal{P}(S)$ of all subsets of S by: for all $A, B \in \mathcal{P}(S), A \mathcal{R} B$ if and only if the number of odd integers in A is equal to the number of odd integers in B.
(a) Prove that \mathcal{R} is an equivalence relation on $\mathcal{P}(S)$.
(b) Find the number of equivalence classes of \mathcal{R}. Explain.
(c) Find three elements in the equivalence class $[\{1,2,3\}]$.
(d) Find the number of elements in the equivalence class [\{1,2,3\}]. Simplify your answer.
[7] 6. One of the following statements is true and one is false. Prove the true statement and disprove the false statement.
(a) for all sets $A, B, C, D,(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$.
(d) for all sets $A, B, C, D,(A \cup C) \times(B \cup D) \subseteq(A \times B) \cup(C \times D)$.
[12] 7. Let G be the graph shown at the right.
(a) Find a spanning tree of G.

(b) Does G have an Euler circuit? Explain. If no, add one new edge to G so that the new graph does have an Euler circuit, and draw the new graph here.
(c) Does G have a Hamiltonian circuit? Explain. If no, add one new edge to G so that the new graph does have a Hamiltonian circuit, and draw the new graph here.
(d) Find a subgraph of G which is isomorphic to the complete bipartite graph $K_{2,2}$.
[6] 8. Define the sequence $a_{0}, a_{1}, a_{2}, \ldots$ by:
$a_{0}=1, a_{1}=6$, and $a_{n}=3 a_{n-1}-2 a_{n-2}-5$ for all integers $n \geq 2$.
Use strong mathematical induction (or well ordering) to prove that $a_{n}=5 n+1$ for all integers $n \geq 0$.

