MATH 271 ASSIGNMENT 5 SOLUTIONS

1. If f : R — R is a function (where R.is the set of all real numbers), we define the function @ to be
the composition fo f, and for any mteger n > 2, define f("+1) = fo f(M So f@(z) = (fo f)(z) =
F(f (@), fO(2) = (f o FP)(@) = f(f(f(=))), and s0 on.

Let f: R — R be defined by f(z) = 3z? for all z € R.

(a) Find and simplify f@(z) and O ().
(b) Use part (a) (and more calculations if you need them) to guess a formula for f () ().

(c) Prove your guess using mathematical induction.
(d) Find all z € R so that f@™)(z) = z.
(a) We get
fO(z) = f(F(=)) = f(32%) = 3(32%)" = 3%
and
fO(z) = f(FP(2)) = F(3%%) = 3(3°")" = 87",
(b) Since f?(z) = 33z = 3122 and f®(z) = 3"z® = 3°° 2%, we guess that
fM(z) =312 foralln> 2

(c) Basis step. This is already done, since our formula is true when n = 2.

Inductive step. Assume that f k)g‘b‘) 32"-122" for some integer k& > 2. We want to
prove that f¢+D(z) = 327122 Well,

FEg) = ( ‘”)(:1:)) by definition
= f (32’:_1:1:?) by assumption
= 3(3*2?)

31+(2’°—132$(2’°)2

k+1_ k+1
32 11:2 ;

which finishes the inductive step. This proves that our guess is correct for every integer
T2 A

(d) Since f@™(z) = 37"-127" we need to solve the equation 32 ~12%"" = z. One
obvious solution is z = 0. So assuming now that = # 0, we can divide both sides by z
and get 327" ~122" -1 = 1, which can be rewritten as (3z)2""~! = 1, which means that
3z = 1 since 2°™* — 1 is odd. Thus the only other solution is = = 1/3.

2. Let [n] = {1,2,...,n}, where n is a positive integer. Let R be the relation on the power set P([n])
defined by: for A, B € P([n]), ARB if and only if 1 & A — B.

(a) Is R reflexive? Symmetric? Transitive? Explain.
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(b) Find the number of ordered pairs (A4, B) of sets in P([n]) such that ARB. [Hint: first count
the number of ordered pairs (A, B) of sets in P([r]) so that AR B.]

(¢) Suppose you choose sets A, B € P([n]) at random. What is the probability that ARB?

(d) Let S be the relation on the power set P([n]) defined by: for 4, B € P([n]), ASB if and only
if1c€ A— B. Is § transitive? Explain.

(a) R is reflexive. Here is a proof. Let A € P([n]) be arbitrary. Then 4 — A = ), so
1¢ A— A, so ARA.
R is not symmetric. Here is a counterexample. Let A = @ and B = {1}. Then
A—-B=0,s01¢A— B,so ARB. However B— A= {l1},s01 € B— A, so BR A.
R is transitive. Here is a proof. Let A, B, C € P([n]) be arbitrary so that ARB and
BRC'. This means that 1 ¢ A— B and 1 ¢ B— C. We want to prove that ARC, which
means we want to prove that 1 € A — C. We do this by contradiction. Suppose that
1€ A—C. This means that 1 € Abut 1 ¢ C. Since 1 € Abut 1 € A— B, it must mean
that 1 € B. But now 1 € B and 1 ¢ C means 1 € B — C, which is a contradiction.
Therefore 1 € A — C, so R is transitive.

(b) Since AR B means 1 € A — B, to count the number of ordered pairs (A4, B) so that
AR B we just count the number of (A, B) so that 1 € A and 1 ¢ B. The number
of subsets A of [n] so that 1 € A is just the number of subsets of {2,3,...,n}, which
is 2" (for example, see p. 285). The number of subsets B of [n] so that 1 & B is
also just the number of subsets of {2,3,...,n}, which is 2"~!. Thus the number of
ordered pairs (A, B) so that AR B is 271 . 271 = 22(=1) by the Multiplication Rule.
There are 2" subsets of [n] altogether, so there are 2" - 2" = 2% ordered pairs (A, B)
altogether. Therefore the number of ordered pairs (A4, B) of sets in P([n]) such that
ARB is 227 — 22(73.-—1) - 22n.~—2(22 _ 1) s 3(2271—2).

(c) Since all choices of subsets A, B € P([n]) are equally likely, the probability is

number of (4, B) so that ARB _ 3(2?"%) 3
total number of (A4, B) o2 T g

regardless of the value of n.

(d) Yes, S is transitive, vacuously. Suppose that 4, B, C € P([n]) satisfy ASB and BSC.
This means that 1 € A—Band 1€ B—(C. But 1 € A — B means in particular that
1 ¢ B, while 1 € B — C means in particular that 1 € B. This is a contradiction, so the
“if” part of the definition of transitivity can never happen, so the relation & is transitive
vacuously.

3. Let F bethe set of all functions f : {1,2,...,n} — {1,2,...,n}, where n is a positive integer. Define
a relation R on F by: for f,g € F, fRyg if and only if f(k) + g(k) is even for all k € {1,2,... 1}

(a) Prove that R is an equivalence relation on F.

(b) Suppose that n = 2m + 1 is odd. Find the number of functions in the equivalence class [id),
where id is the identity function on {1,2,...,n}. How many of these functions are one-to-one
and onto?



(c)

(a)

(b)

Suppose that n = 2m is even. Find the number of functions in the equivalence class [g], where
g(z) =1 is a constant function. How many of these functions are one-to-one and onto?

R is reflezive. Let f € F be arbitrary. Then f(k) + f(k) = 2f(k) is even for every
k€{1,2,...,n}, since f(k) is an integer, so fRf.

R is symmetric. Let f,g € F be arbitrary so that fRg. This means that f(E) + g(k)
is even for all k£ € {1,2,...,n}. But then g(k) + f(k) = f(k) + g(k) is even for all
ke {l,2,....,n} 80gRf.

R is transitive. Let f,g,h € F be arbitrary so that fRg and gRh. This means
that f(k) + g(k) is even for all k € {1, 2,...,n}, and g(k) + h(k) is even for all
ke{l,2,...,n}. But then f(k)+ g(k)+g(k) + h(k) = f(k) + h(k) + 2g(k) is even for
all k € {1,2,...,n}, so f(k) + h(k) is even for all k € {1,2,...,n}, since the sum and
difference of even numbers is even. Therefore fRAh.

We want to count the number of functions f € F so that fR id. id is the function
id(k) = k for all k € {1,2,...,n}. Thus fR id means that f(k) + k is even for all
k. This in turn means that f(k) must be even whenever k is even, and odd whenever
k is odd. Since n = 2m + 1, there are m even numbers and m + 1 odd numbers in
{1,2,...,n}. So for each of the m even k’s there are m choices for f(k), and for each
of the m + 1 odd k’s there are m + 1 choices for f(k). Thus the total number of ways
we can define f is m™(m + 1)™+1,

If we insist that f be one-to-one and onto, we only need to make it one-to-one, since
any one-to-one function f : {1,2,...,n} — {1,2,...,n} will have to be onto as well.
Now when we count how many ways there are to define f(2), f(4),..., f(2m) (that is,
f(k) for the m even k’s), we get m ways to define f(2), m — 1 ways to define f(4),
and so on down to just one way to define f(2m). So there are m! ways to define
f(2), f(4),..., f(2m). Similarly, there are m + 1 ways to define f(1), m ways to define
f(3), and so on down to just one way to define f(2m + 1). So there are (m+1)! ways to
define f(1), f(3),..., f(2m + 1). Thus altogether there are m!(m + 1)! ways to define
f so that it is one-to-one and onto.

This time we want to count the number of functions f € F so that fRg. But since
g(k) =1forall k € {1,2,...,n}, to get f(k) + g(k) to be even for all &, we will need
that f(k) is odd for all k. Since n = 2m, there are m odd numbers in {1:2;4: ., m}. Bo
we have m choices for each f(k), and thus the total number of ways we can define fis
mht = m2m.

If we insist that f be one-to-one and onto, once again we only need to make it one-to-
one. But since f(k) must be odd for every k, and the total number of &’s (2m) is greater
than the number of odd numbers available (m), it is impossible to assign a different odd
number to each f(k). Thus the number of one-to-one onto functions this time is zero.



