
MATH 271 ASSIGNMENT 3 SOLUTIONS

1. Let n be a positive integer. If A1, A2, . . . , An are sets, we write

Sn = A1 − (A2 − (A3 − (· · · − (An−1 −An)) · · ·)).

For example, if n = 4 then S4 = A1 − (A2 − (A3 −A4)).

(a) Let A be a set, and let Ai = A for all 1 ≤ i ≤ n, so that

Sn = A− (A− (A− (· · · − (A−A)) · · ·)),

where there are n A’s. Prove (using induction or well ordering) that

Sn =

{
A if n is odd
∅ if n is even.

(b) Prove that for all sets A and B, A− (B −A) = A. You may use the identities on page 272.

(c) Let A and B be sets, and let Ai =

{
A if i is odd
B if i is even

. Find a simple formula (something like

in part (a)) for Sn, and prove it using induction or well ordering.

(a) Basis Step. If n = 1, then S1 = A, which agrees with what we want since 1 is odd.

Inductive Step. Assume that the formula for Sk is correct for some positive integer k.
Then

Sk+1 = A− (A− (A− (· · · − (A− A)) · · ·)) (with k + 1 A’s)

= A− Sk

=

{
A− A if k is odd
A− ∅ if k is even

by assumption

=

{
∅ if k + 1 is even
A if k + 1 is odd

so the formula for Sk+1 is correct.

Therefore, by induction, the formula for Sn is correct for all positive integers n.

(b) Using the identities on page 272,

A− (B − A) = A− (B ∩ Ac) = A ∩ (B ∩ Ac)c (#12)

= A ∩ (Bc ∪ (Ac)c) (#9)

= A ∩ (Bc ∪ A) (#6)

= (A ∩Bc) ∪ (A ∩ A) (#3)

= (A ∩Bc) ∪ A (#7)

= A. (#1, #10)
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You could also prove this using the element method:

To prove A− (B − A) ⊆ A: Let x ∈ A− (B − A) be arbitrary. This implies x ∈ A, so
A− (B − A) ⊆ A.

To prove A ⊆ A − (B − A): Let x ∈ A be arbitrary. Then notice that x 6∈ B − A,
because if x ∈ B − A it implies x 6∈ A which is a contradiction. Since x 6∈ B − A, we
get x ∈ A− (B − A). Thus A ⊆ A− (B − A).

Therefore A− (B − A) = A.

(c) We get S1 = A, S2 = A − B, and S3 = A − (B − A) which is equal to A by part (b).
So we guess that

Sn =

{
A if n is odd
A−B if n is even,

and we now prove this by induction.

Basis Step. If n = 1, then S1 = A, which agrees with our guess since 1 is odd.

Inductive Step. Assume that our guessed formula for Sk is correct for some positive
integer k. Then

Sk+1 =

{
A− (B − (A− (· · · − (B − A)) · · ·)) if k + 1 is odd
A− (B − (A− (· · · − (A−B)) · · ·)) if k + 1 is even.

Note that the expression B− (A− (· · ·− (B−A)) · · ·) (or B− (A− (· · ·− (A−B)) · · ·))
inside the outer parentheses is just Sk with A and B switched. Thus by assumption
this expression must be {

B if k is odd
B − A if k is even.

Therefore

Sk+1 =

{
A− (B − A) = A if k + 1 is odd (again using part (b))
A−B if k + 1 is even,

so the formula for Sk+1 is correct.

Therefore, by induction, the formula for Sn is correct for all positive integers n.

2. There are 5 men and 5 women, of 10 different heights.

(a) Find the number of ways of arranging the 10 people in a row so that the ith shortest woman
is next to the ith shortest man, for all 1 ≤ i ≤ 5.

(b) Find the number of ways of arranging the 10 people in a row so that the women occupy five
consecutive spots.

(c) Find the number of ways of arranging the 10 people in a row so that everyone except the
tallest person is next to someone taller.
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(a) Since the ith shortest man and the ith shortest woman must be next to each other for
each i, we can think of each couple as being “tied together” and first arrange the five
couples. This can be done in 5! ways. For each such arrangement, we can put each
couple in two orders (MW or WM), which doubles the number of arrangements for each
couple. Thus the total number of arrangements is 5! · 25 = 120 · 32 = 3840.

(b) The five consecutive spots the women occupy could be in 6 different locations: spots 1
to 5, 2 to 6, 3 to 7, 4 to 8, 5 to 9, or 6 to 10. For each of these choices, there are 5! ways
to arrange the women in these spots, and for each such way of arranging the women
there are also 5! ways of arranging the men in the five remaining spots. Thus there are
6 · 5! · 5! = 6(120)2 = 86400 such arrangements.

(c) Suppose the people are A1 to A10 from tallest to shortest. To make such an arrangement,
start with A1. Then A2 must stand next to A1, so there are two choices for where A2

goes, either to the left or the right of A1. Then A3 must stand next to either A1 or A2,
but not in between them, so A3 must go at one end of the “line” formed by A1 and
A2, so there are two choices for where A3 goes. Then A4 must go at one end of the
line formed by A1, A2 and A3, so there are two choices for A4. And so on, considering
each person in order from tallest to shortest, each person must go at one end of the line
formed by all the taller people. Thus each of the 9 people other than the tallest person
has two choices for where to be in line, so there are 29 = 512 arrangements altogether.

Another way to do this problem is by induction. First we would need to get a guess for
the correct answer for the general problem where there are n people of different heights.
In fact we may as well rephrase the problem to be: find the number of arrangements
of the numbers 1, 2, . . . , n so that each number except n is next to a larger number.
We’ll call these “good” arrangements. For small numbers n you can count the good
arrangements: for n = 2 there are two (12 and 21), for n = 3 there are four (123,
132, 231, 321), and so on. Soon we get the guess that there should be 2n−1 good
arrangements of the numbers 1, 2, . . . , n, and we now can prove this by induction. We
already know the formula is correct for n = 2. So suppose that the formula is correct for
some integer n = k, where k ≥ 2. So there are 2k−1 good arrangements of the numbers
1, 2, . . . , k. Notice that for each such arrangement, we can stick the number k + 1 in
on either side of the number k (wherever it is), and we will get a good arrangement of
1, 2, . . . , k + 1, because now k is next to a larger number, and any number that used to
be next to k either still is or else is now next to the even larger number k+1. This gives
us 2 · 2k−1 = 2k good arrangements of 1, 2, . . . , k + 1. Moreover each good arrangement
of 1, 2, . . . , k + 1 will get counted this way, because if you take a good arrangement
of 1, 2, . . . , k + 1 and pull out the k + 1 (and close up the gap) you will get a good
arrangement of 1, 2, . . . , k, because we know k had to be next to k + 1, so any other
number ` that used to be next to k+1 will now be next to k, and ` < k, so everything is
still okay. Thus there are exactly 2k good arrangements of 1, 2, . . . , k + 1, which agrees
with the formula when n = k + 1. This finishes the Inductive Step, and so we know
that there are exactly 2n−1 good arrangements of 1, 2, . . . , n for each integer n ≥ 1. In
particular, there are 29 good arrangements when n = 10, which answers the question.
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3. Find the number of ordered pairs (A,B) of subsets of {1, 2, . . . , 10} satisfying:

(a) N(A ∩B) = 7. (N(X) is the number of elements in the set X; see page 299.)

(b) N(A×B) = 7.

(c) N
(
P(A ∪B)

)
= 7. (P(X) is the power set of the set X.)

(d) N
(
P(A) ∪ P(B)

)
= 7.

(a) We want A ∩ B to have exactly 7 elements from the set {1, 2, . . . , 10}. There are
(

10
7

)
ways to choose these 7 elements. For each such choice, the other three elements in
{1, 2, . . . , 10} could be in either A or B (or neither), but cannot be in both (or the
size of the intersection would be too large). So each of the 3 other elements has three
choices: in A, in B, or in neither. This means there are 33 = 27 ways to distribute
the 3 elements not in A ∩ B, for each of the

(
10
7

)
choices for A ∩ B, so there are

27
(

10
7

)
= 27

(
10
3

)
= 27·10·9·8

3·2 = 3240 such choices of ordered pairs (A, B) altogether.

(b) Since 7 = N(A× B) = N(A)×N(B) and 7 is prime, we would need either N(A) = 7
and N(B) = 1, or N(A) = 1 and N(B) = 7. The number of 7-element subsets of

{1, 2, . . . , 10} is
(

10
7

)
=

(
10
3

)
= 120, and the number of 1-element subsets is

(
10
1

)
which of

course is 10. So the number of ways to choose A and B with N(A) = 7 and N(B) = 1
is 120 × 10 = 1200, and the number of ways to choose A and B with N(A) = 1 and
N(B) = 7 is also 1200. So there are 2400 such ordered pairs (A, B) altogether.

(c) For any set X with n elements, its power set P(X) has 2n elements. Since 7 is not a
power of 2, P(A ∪ B) cannot be equal to 7, so there are 0 (zero) such ordered pairs
(A, B) in this case.

(d) We want P(A) ∪ P(B) to have exactly 7 elements, where the number of elements in
each of P(A) and P(B) separately must be a power of 2. If either A or B had three
or more elements, then their power set would already have at least 8 elements, which
is too big. On the other hand, if say A had only one element, then its power set would
have only two elements, while P(B) would have at most 4 elements, which totals to
at most 6 elements, not enough. So each of A and B must have exactly two elements.
Then they both have 22 = 4 subsets, but notice that the empty set is a subset of each,
which means that P(A) ∪ P(B) would have at most 4 + 4 − 1 = 7 elements. If A and
B had any elements in common, the number of subsets in P(A) ∪P(B) would be even
smaller, so it means that what we want to count is the number of ordered pairs (A, B)

of disjoint 2-element subsets of {1, 2, . . . , 10}. The number of choices for A is
(

10
2

)
= 45,

and for each choice of A the number of choices for B is
(

8
2

)
= 28. So the total number

of ordered pairs (A, B) is 45 · 28 = 1260.

You could also do this count by first counting the number of ways to choose the four
elements in A ∪ B (which is

(
10
4

)
= 210), and multiplying by the number of ways to

choose two of these four elements to be A (which is
(

4
2

)
= 6), getting 210 · 6 = 1260

ways to choose A and B.
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