
MATH 271 ASSIGNMENT 2 SOLUTIONS

1. For an integer n ≥ 1, let S(n) be the statement

2 +
1
24
− 2

n + 1
≤ 1
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+
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+ · · ·+ 2n− 1
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n

.

(a) Prove by induction (or by well-ordering) that S(n) is true for all integers n ≥ 2.

(b) Let N be your student ID number. Use (a) to find⌊
1
13

+
3
23

+
5
33

+ · · ·+ 2N − 1
N3

⌋
.

(a) Basis step. When n = 2 S(2) is
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which is
11

8
≤ 1 +

3

8
≤ 2,

which is true.

Inductive step. Assume that S(k) holds for some integer k ≥ 2. We want to prove that
S(k + 1) holds. So we are assuming that
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and we want to prove that
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From (1) we get
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So in order to prove (2), we would like to prove that
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1
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− 2

k + 2
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1
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− 2
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+
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(k + 1)3
(3)

and
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Well,

(3) ⇐⇒ 2
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− 2

k + 2
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(k + 1)3

⇐⇒ 2

(k + 1)(k + 2)
≤ 2k + 1
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⇐⇒ 2(k + 1)2 ≤ (k + 2)(2k + 1)

⇐⇒ 2k2 + 4k + 2 ≤ 2k2 + 5k + 2,
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which is true for all integers k ≥ 2. Thus (3) is true. Also,

(4) ⇐⇒ 2k + 1

(k + 1)3
≤ 2

k
− 2

k + 1

⇐⇒ 2k + 1

(k + 1)3
≤ 2

k(k + 1)

⇐⇒ (2k + 1)k ≤ 2(k + 1)2

⇐⇒ 2k2 + k ≤ 2k2 + 4k + 2,

which is also true for all integers k ≥ 2. Thus (4) is true too. This finishes the proof of
the inductive step. Thus S(n) holds for all integers n ≥ 2.

(b) Since your student ID number N is greater than 47, 1
24

> 2
N+1

. Thus from (a),
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1
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⌋
= 2.

2. The sequence b0, b1, b2, . . . is defined by: b0 = 1, b1 = 1, b2 = 6, and bn = 3bn−2 + 2bn−3 for all
integers n ≥ 3.

(a) Find b3, b4 and b5.

(b) Use part (a) (and more data if you need it) to guess a simple formula for bn.
[Hint: how far away is b4 from the nearest power of 2? How about b5?]

(c) Use strong induction (or well-ordering) to prove your guess.

(a) We get
b3 = 3b1 + 2b0 = 3 · 1 + 2 · 1 = 5,

b4 = 3b2 + 2b1 = 3 · 6 + 2 · 1 = 20,

b5 = 3b3 + 2b2 = 3 · 5 + 2 · 6 = 27.

(b) The nearest power of 2 to b4 = 20 is 24 = 16, which is 4 less than b4. The nearest
power of 2 to b5 = 27 is 25 = 32, which is 5 more than b5. We could also find that
b6 = 3b4 + 2b3 = 3 · 20 + 2 · 5 = 70, which is 6 more than the nearest power of 2 which
is 26 = 64. So we guess that

bn =

{
2n + n if n is even,
2n − n if n is odd,

which could also be written as: bn = 2n + (−1)nn for all integers n ≥ 0.

(c) Basis Step. We must prove that our guessed formula for bn is true when n = 0, 1 and
2. Note that 20 + (−1)00 = 1 + 0 = 1 = b0, 21 + (−1)11 = 2 − 1 = 1 = b1, and
22 + (−1)22 = 4 + 2 = 6 = b2, so this all checks.
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Inductive Step. Assume that the guessed formula is correct for all integers n between
0 and k inclusive, where k ≥ 2 is some integer. We want to prove that the formula is
correct for n = k +1, that is we want to prove that bk+1 = 2k+1 +(−1)k+1(k +1). Well,

bk+1 = 3bk−1 + 2bk−2 by the recurrence

= 3[2k−1 + (−1)k−1(k − 1)] + 2[2k−2 + (−1)k−2(k − 2)] by assumption

= 3 · 2k−1 + 3(−1)k−1(−1)2(k − 1) + 2k−1 + 2(−1)k−2(−1)4(k − 2)

= 4 · 2k−1 + (−1)k+1[3(k − 1)− 2(k − 2)]

= 2k+1 + (−1)k+1(3k − 3− 2k + 4) = 2k+1 + (−1)k+1(k + 1),

so the formula is correct for n = k + 1. Therefore the formula is correct for all integers
n ≥ 0.

3. You are given the following “while” loop:

[Pre-condition: m is a nonnegative even integer, a = 0, b = 0, c = 0.]

while (a 6= m)
1. b := 2a− b
2. c := 2b− c
3. a := a + 1

end while

[Post-condition: c = 2m.]

Loop invariant: I(n) is

a = n, b =

{
n if n is even
n− 1 if n is odd

}
, c =

{
2n if n is even
0 if n is odd

}
.

(a) Prove the correctness of this loop with respect to the pre- and post-conditions.

(b) Suppose the “while” loop is as above, but c = 1 in the pre-condition, and statement 2 in the
“while” loop is replaced by: c := 2b− a. Find a post-condition that gives the final value of c,
and an appropriate loop invariant, and prove the correctness of this loop.

(a) We first need to check that the loop invariant holds when n = 0. Since 0 is even, I(0)
says a = 0, b = 0 and c = 2 · 0 = 0, and these are all true by the pre-conditions.

So now assume that the loop invariant I(k) holds for some integer k ≥ 0 where k < m.
We want to prove that I(k+1) holds, that is, that the loop invariant will still hold after
one more pass through the loop. So we are assuming that

a = k, b = k, c = 2k if k is even, a = k, b = k − 1, c = 0 if k is odd,

and we now go through the loop.

• Step 1: b := 2a− b =

{
2k − k = k if k is even
2k − (k − 1) = k + 1 if k is odd

}

=

{
(k + 1)− 1 if k + 1 is odd
k + 1 if k + 1 is even

}
.
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• Step 2: c := 2b− c =

{
2k − 2k = 0 if k is even
2(k + 1)− 0 = 2(k + 1) if k is odd

}

=

{
0 if k + 1 is odd
2(k + 1) if k + 1 is even

}
.

• Step 3: a := a + 1 = k + 1.

This means that I(k + 1) is true, as required.

Finally the loop stops when a = m, and we need to check that at that point the post-
condition is satisfied. When a = m it means that the loop invariant I(m) must hold,
so, since m is even, from I(m) we know that c = 2m as required.

(b) If we set the variables to their pre-condition values of a = 0, b = 0 and c = 1, and run
through the loop, the new values we get are b = 2(0)− 0 = 0, c = 2(0)− 0 = 0, a = 1.
If we continue to run through the loop, and keep track of the variables in a table, here
is what we get:

n 0 1 2 3 4 5
b 0 0 2 2 4 4
c 1 0 3 2 5 4
a 0 1 2 3 4 5

From this (or by running through the loop once or twice more to collect more evidence)
we can guess that the loop invariant we want will be

I(n) : a = n, b =

{
n if n is even
n− 1 if n is odd

}
, c =

{
n + 1 if n is even
n− 1 if n is odd

}
,

and the post-condition value of c ought to be c = m + 1, since m is even. This choice
of I(n) becomes a = 0, b = 0 and c = 1 when n = 0, so the pre-condition is satisfied.

So now we assume that the new loop invariant I(k) holds for some integer k ≥ 0, k < m,
and we want to prove that I(k + 1) holds. So we are assuming that

a = k, b = k, c = k + 1 if k is even, a = k, b = k − 1, c = k − 1 if k is odd,

and we now go through the loop.

• Step 1: b := 2a− b =

{
2k − k = k if k is even
2k − (k − 1) = k + 1 if k is odd

}

=

{
(k + 1)− 1 if k + 1 is odd
k + 1 if k + 1 is even

}
.

• Step 2: c := 2b− a =

{
2k − k = k if k is even
2(k + 1)− k = k + 2 if k is odd

}

=

{
(k + 1)− 1 if k + 1 is odd
(k + 1) + 1 if k + 1 is even

}
.

• Step 3: a := a + 1 = k + 1.

This means that I(k + 1) is true, as required.

Finally the loop stops when a = m, and we need to check that at that point the post-
condition is satisfied. When a = m it means that the loop invariant I(m) must hold,
so, since m is even, from I(m) we know that c = m + 1 as required.
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