
MATH 271 ASSIGNMENT 1 SOLUTIONS

1. For each true statement below, give a proof. For each false statement below, write out its negation,
then give a proof of the negation.

(a) ∀a, b ∈ Z+, if a|b and (a + 1)|b then (a + 2)|b.
(b) ∀a, b ∈ Z+, if a|b and a|(b + 1) then a|(b + 2).

(c) ∃a ∈ Z+ such that ∀b ∈ Z+, a|b and (a + 1)|b.
(d) ∀a ∈ Z+ ∃b ∈ Z+ such that a|b and (a + 1)|b.
(e) ∀a ∈ Z+ ∃b ∈ Z+ such that a < b, a|b and (a + 1)|(b + 1).

(a) This statement is false. The negation is
∃a, b ∈ Z+ such that a|b and (a + 1)|b but (a + 2) 6 | b.

An example (or a counterexample to the original statement) is a = 1 and b = 2. Then
a|b since 1|2, and (a + 1)|b since 2|2, but (a + 2) 6 | b since 3 6 | 2.

(b) This statement is true. Here is a proof.

Let a, b ∈ Z+ be arbitrary so that a|b and a|(b + 1). This means that b = ak and
b + 1 = a` for some k, ` ∈ Z. Thus ak + 1 = a`, so

a(` − k) = a` − ak = 1.

Since ` − k is an integer, this says that a|1 and so a must be equal to 1 (since a > 0).
But then it is clear that a|(b + 2). This is what we wanted to prove.

(c) This statement is false. The negation is
∀a ∈ Z+ ∃b ∈ Z+ such that a 6 | b or (a + 1) 6 | b.

Here is a proof of the negation. Let a ∈ Z+ be arbitrary. We choose b = 1 (regardless
of the value of a). Since a + 1 ≥ 2, (a + 1) 6 | b. Thus the negation is true, and so the
original statement is false..

(d) This statement is true. Here is a proof.

Let a ∈ Z+ be arbitrary. Choose b = a(a + 1), which is a positive integer. Then a|b
(since a + 1 ∈ Z) and (a + 1)|b (since a ∈ Z).

(e) This statement is true. Here is a proof.

Let a ∈ Z+ be arbitrary. Choose b = a(a + 2), which is a positive integer. Then a|b
(since a+2 ∈ Z) and (a+1)|(b+1) (since b+1 = a2 +2a+1 = (a+1)2 and a+1 ∈ Z).

But the question is: how could we guess that b = a(a + 2)? One way is:

1) get data and look for a pattern.

• When a = 1, we want 1|b and 2|(b + 1), and the smallest integer b > 1 that works
is b = 3.

• When a = 2, we want 2|b and 3|(b + 1), and the smallest integer b > 2 that works
is b = 8.
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• When a = 3, we want 3|b and 4|(b + 1), and the smallest integer b > 3 that works
is b = 15.

And so on. Eventually (using more data if you need it) you will see that 3 = 22 − 1,
8 = 32 − 1, and 15 = 42 − 1 (or maybe 3 = 1 · 3, 8 = 2 · 4, and 15 = 3 · 5), so it looks
like b should be (a + 1)2 − 1 = a(a + 2). Or you might:

2) do some algebra to find b. We want a|b and (a + 1)|(b + 1), which says we want
integers k and ` so that b = ak and b + 1 = (a + 1)`. Thus ak + 1 = (a + 1)`, and so

` =
ak + 1

a + 1
= k − k − 1

a + 1
.

Since ` and k are both integers, k−1
a+1

must be an integer too, so let’s try k − 1 = a + 1
which says k = a + 2. This would mean b = a(a + 2).

2. (a) Prove or disprove the following statement: ∀a ∈ R, if bac = 2 then b2ac = 4.

(b) Write out the contrapositive of the statement in part (a). Is it true or false? Explain.

(c) Write out the converse of the statement in part (a). Is it true or false? Explain.

(d) Prove or disprove the following statement: ∀r ∈ R+ ∃n ∈ Z+ so that brnc is prime.

(e) Prove or disprove the following statement: ∃n ∈ Z+ so that ∀r ∈ R+, brnc is prime.

(a) This statement is false. A counterexample is a = 2.5. Then bac = 2 but b2ac = b5c =
5 6= 4.

(b) The contrapositive is: ∀a ∈ R, if b2ac 6= 4 then bac 6= 2. The contrapositive is false
because it is logically equivalent to the original statement which is false.

(c) The converse is: ∀a ∈ R, if b2ac = 4 then bac = 2. The converse is true. Here is a
proof.

Let a ∈ R be arbitrary so that b2ac = 4. This means that 4 ≤ 2a < 5. Therefore,
dividing by 2 we get that 2 ≤ a < 2.5. So certainly 2 ≤ a < 3 which means that bac = 2
which is what we want to prove.

(d) This statement is false. To show this we will prove that the negation is true. The
negation is

∃r ∈ R+ so that ∀n ∈ Z+, brnc is not prime.

An example is r = 4. Then for any n ∈ Z+, rn = 4n is an integer so brnc = 4n = 2 · 2n
which is not prime.

Bonus problem. Try to answer part (d) when “prime” is replaced by “composite”. If
you think you have an idea, talk to your professor or TA.

(e) This statement is false. To show this we will again prove that the negation is true.
The negation is

∀n ∈ Z+ ∃r ∈ R+ so that brnc is not prime.

Let n ∈ Z+ be arbitrary. We choose r = 4 (regardless of what n is). Then brnc = 4n =
2 · 2n which is not prime.

Another solution would be to choose r = 1/n. Then brnc = 1 which is not prime.
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3. Let N be your student ID number.

(a) Use the Euclidean Algorithm to find gcd(N, 271).

(b) Use your answer to part (a) to write gcd(N, 271) in the form Na + 271b where a, b ∈ Z.

(c) [In this part you may use results from §3.1 such as Theorem 3.1.1 on page 133 or exercises 25,
26, 27, 39, 40 or 42 from page 140. If you use any of these results, be sure to say which ones.]
Let’s consider all the Math 271 students’ answers to part (b). Prove that no student could
have correctly given integers a and b which are both even.

(a) Let’s do it for the hypothetical student number N = 123456. The Euclidean algorithm
gives:

123456 = 455 · 271 + 151 (so 151 = 123456 − 455 · 271)

271 = 1 · 151 + 120 (so 120 = 271 − 151)

151 = 1 · 120 + 31 (so 31 = 151 − 120)

120 = 3 · 31 + 27 (so 27 = 120 − 3 · 31)

31 = 1 · 27 + 4 (so 4 = 31 − 27)

27 = 6 · 4 + 3 (so 3 = 27 − 6 · 4)

4 = 1 · 3 + 1 (so 1 = 4 − 3)

3 = 3 · 1,

so gcd(123456, 271) = 1, the last nonzero remainder.

(b) Now, starting with the second-last equation above, solving it for the gcd 1, and plugging
in the remainders one by one from the earlier equations, we get:

1 = 4 − 3

= 4 − (27 − 6 · 4) = 7 · 4 − 27

= 7 · (31 − 27) − 27 = 7 · 31 − 8 · 27

= 7 · 31 − 8 · (120 − 3 · 31) = 7 · 31 − 8 · 120 + 24 · 31 = 31 · 31 − 8 · 120

= 31 · (151 − 120) − 8 · 120 = 31 · 151 − 39 · 120

= 31 · 151 − 39 · (271 − 151) = 70 · 151 − 39 · 271

= 70 · (123456 − 455 · 271) − 39 · 271 = 70 · 123456 − 31850 · 271 − 39 · 271

= 70 · 123456 − 31889 · 271.

So a = 70 and b = −31889 in this case.

(c) We’ll prove this by contradiction. Suppose that some student (with student ID N)
found a correct answer where both a and b were even. Suppose that gcd(N, 271) = d.
So the student would have obtained the equation Na + 271b = d, so d must be even
since both a and b are even. (This uses Theorem 3.1.1 on page 133 and exercise 42
(twice) on page 140.) But since 271 is odd and d|271 this means that d must be odd.
(In fact, 271 is prime which means that d can only be 1 or 271, but we don’t need to
know that.) This is a contradiction, so a and b cannot both be even.
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