
MATH 271 ASSIGNMENT 4 SOLUTIONS

1. If F : X → X is a function, define f2(x) to be (f◦f)(x), and inductively define fk(x) = (f◦fk−1)(x)
for each integer k ≥ 3. (So f3(x) = (f ◦ f2)(x) = f(f(f(x))) for instance.) We also define f1(x) to
be f(x).

Let f : Z → Z be defined by: for all n ∈ Z, f(n) =

{
2− 2n if n is odd,
1− 2n if n is even.

(a) Find f2(n), f3(n), and f4(n).

(b) Use part (a) (and more data if you need it) to guess a fairly simple formula for fk(n) for any
positive integer k. (You may need to consider k odd and k even separately.)

(c) Use induction on k (or well ordering) to prove your guess.

(a) We get

f 2(n) = f(f(n)) =

{
f(2− 2n) if n is odd,
f(1− 2n) if n is even.

=

{
1− 2(2− 2n) if n is odd (since 2− 2n is even),
2− 2(1− 2n) if n is even (since 1− 2n is odd).

=

{
4n− 3 if n is odd,
4n if n is even;

f 3(n) = f(f 2(n)) =

{
f(4n− 3) if n is odd,
f(4n) if n is even.

=

{
2− 2(4n− 3) if n is odd (since 4n− 3 is odd),
1− 2(4n) if n is even (since 4n is even).

=

{
8− 8n if n is odd,
1− 8n if n is even;

f 4(n) = f(f 3(n)) =

{
f(8− 8n) if n is odd,
f(1− 8n) if n is even.

=

{
1− 2(8− 8n) if n is odd (since 8− 8n is even),
2− 2(1− 8n) if n is even (since 1− 8n is odd).

=

{
16n− 15 if n is odd,
16n if n is even.

(b) From part (a) we might guess that if k is odd, then fk(n) =

{
2k − 2kn if n is odd,
1− 2kn if n is even,

and if k is even, then fk(n) =

{
2kn− 2k + 1 if n is odd,
2kn if n is even.
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(c) Basis step. Our guessed formulas for fk(n) are true for k = 1, 2, 3 and 4, by part (a).

Inductive step. Assume that our guessed formula is true for some integer k = ` ≥ 1.
We want to prove that our formula is true when k = ` + 1. We do this in two cases:

Case (i): ` is even. So we assume that f `(n) =

{
2`n− 2` + 1 if n is odd,
2`n if n is even,

and we

want to prove that f `+1(n) =

{
2`+1 − 2`+1n if n is odd,
1− 2`+1n if n is even.

We get

f `+1(n) = f(f `(n)) =

{
f(2`n− 2` + 1) if n is odd,
f(2`n) if n is even.

=

{
2− 2(2`n− 2` + 1) if n is odd (since 2`n− 2` + 1 is odd),
1− 2(2`n) if n is even (since 2`n is even).

=

{
2`+1 − 2`+1n if n is odd,
1− 2`+1n if n is even,

so the inductive step works in this case.

Case (ii): ` is odd. This time we assume that f `(n) =

{
2` − 2`n if n is odd,
1− 2`n if n is even,

and

we want to prove that f `+1(n) =

{
2`+1n− 2`+1 + 1 if n is odd,
2`+1n if n is even.

We get

f `+1(n) = f(f `(n)) =

{
f(2` − 2`n) if n is odd,
f(1− 2`n) if n is even.

=

{
1− 2(2` − 2`n) if n is odd (since 2` − 2`n is even),
2− 2(1− 2`n) if n is even (since 1− 2`n is odd).

=

{
2`+1n− 2`+1 + 1 if n is odd,
2`+1n if n is even,

so the inductive step works in this case too. Therefore the guessed formula is true for
all integers k ≥ 1.

2. For each integer n ≥ 3, let Gn be the graph with vertex set V (Gn) = {1, 2, 3, . . . , n} and where, for
all distinct a, b ∈ V (Gn), ab is an edge if and only if gcd(a, b) = 1.

(a) Draw G3 and G4.

(b) Find all integers n ≥ 3 so that Gn has a Hamiltonian circuit.

(c) Show that Gn does not have an Euler circuit if n mod 4 6= 3 (n 6≡ 3 mod 4). [Hint: do even n
and odd n separately.]

(d) Suppose for each integer n ≥ 3 we define the graph G′
n the same way as for Gn except that

V (G′
n) = {2, 3, . . . , n}. Show (without a computer) that G′

8 does not have a Hamiltonian
circuit. [Hint: start by thinking how 6 could fit into a Hamiltonian circuit.]
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(b) For any integer n ≥ 3, Gn has the Hamiltonian circuit (1, 2, 3, . . . , n, 1), because
gcd(k, k + 1) = 1 for any integer k, and also gcd(n, 1) = 1.

(c) Notice that in the graph Gn, vertex 1 is connected to every other vertex, because
gcd(1, k) = 1 for every positive integer k. Thus vertex 1 has degree n − 1. So if n is
even, vertex 1 has odd degree, and therefore Gn does not have an Euler circuit.

Now suppose n is odd. This means that n mod 4 = 1 or 3. Suppose that n mod 4 = 1.
This means that n = 4q + 1 for some integer q. Look at vertex 2. It is connected
to exactly the odd vertices of Gn, because gcd(2, k) = 1 exactly if k is odd. The odd
vertices in Gn are 1, 3, 5, . . . , n = 4q + 1, and there are 2q + 1 of these. Thus vertex 2
has degree 2q + 1, which is an odd number. Therefore Gn has no Euler circuit in the
case n mod 4 = 1 either.

Note: Does Gn have an Euler circuit when n mod 4 = 3? Of course it does when n = 3,
but it doesn’t when n = 7. If you figure out whether Gn has an Euler circuit in any
other cases (n = 11, 15, 19, . . .?) let your professor or TA know.
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Suppose that G′
8 had a Hamiltonian circuit. Every vertex of G′

8 must be included in the
circuit. Since the degree of vertex 6 is only 2, both of its edges must be in the circuit.
So the circuit must contain vertices 5,6,7 in this order. What comes after 7? There are
two cases.

Case (i): Suppose 8 comes after 7 in the circuit. Then the circuit contains 5,6,7,8 in this
order. The next vertex must then be 3, because 3 is the only vertex adjacent to 8 that is
not in the circuit yet. So we have 5,6,7,8,3 in this order, and so the remaining vertices 2
and 4 must go after this and so must be next to each other, which is impossible because
they are not adjacent. So no Hamiltonian circuit is possible in this case.

Case (ii): So suppose 8 does not come after 7 in the circuit. This means that 8 must
come somewhere else in the circuit, but since we cannot use the edge 78 in the circuit
we must use edges 85 and 83, because these are the only other edges containing vertex
8. So the circuit must contain 38567 in this order. But now once again vertices 2 and
4 have to come next, and so must be next to each other, which is impossible. So no
Hamiltonian circuit is possible in this case either.

Therefore G′
8 does not have a Hamiltonian circuit.

Note: You can easily show (as in part (b)) that G′
n will have a Hamiltonian circuit

whenever n is odd. Does G′
n have a Hamiltonian circuit for any even n? If you get any

answers, tell your professor or TA.
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3. (a) Find the total number of all walks (starting at any vertex, ending at any vertex) of length
271 in the complete graph Kn.

(b) Find the total number of walks of length 271 in the complete bipartite graph Km,n.

(c) Find the total number of simple paths of length n− 1 in Kn.

(d) Find the total number of simple paths of length m + n − 1 in Km,n. [You may assume that
m ≥ n. You will need to consider a few cases.]

(a) In Kn we can start at any of the n vertices, then we have n− 1 choices for the first step
of the walk (to any of the n−1 vertices other than the one we are on), then n−1 choices
for the next step, and so on until we have taken 271 steps. So by the multiplication
rule there are n(n− 1)271 such walks.

(b) Let the vertices of Km,n be grouped into the two sets M and N , where M has m vertices
and N has n vertices. Then all steps must go between M and N . There are two cases.

Case (i). If the walk starts at a vertex of M , we have m choices for the starting vertex,
then n choices for the first step of the walk (any of the vertices of N), then m choices
for the next step of the walk (any of the vertices of M), and so on, alternating between
n and m choices until we have taken 271 steps, with the 271st step having n choices.
This means that (including the original choice of starting vertex) we will have n choices
136 times and m choices 136 times, so the total number of walks that start at a vertex
of M is n136m136 = (nm)136.

Case (ii). If the walk starts at a vertex of N , exactly the same argument will again
produce exactly (nm)136 walks.

So the total number of walks is 2(nm)136.

(c) A simple path of length n− 1 in Kn will have to use each vertex exactly once, and we
can use the n vertices in any order we like because all vertices are connected. Thus the
total number of such paths is just the number of permutations of the numbers 1 to n,
which is n!.

(d) Since Km,n has m+n vertices, any simple path of length m+n−1 will use every vertex
exactly once. Again let the vertices of Km,n be grouped into the two sets M and N ,
where M has m vertices and N has n vertices. Then all steps must go between M and
N . Thus the only way to use up every vertex of Km,n with a simple path is if the sizes
of M and N are at most one apart. In other words, if m − n > 1 then there are no
such simple paths. We have two cases left.

Case (i). Suppose m = n+1. Then all such simple paths must start and end at a vertex
of the bigger set M . There are m choices for the starting vertex, then n choices for the
first step, then m− 1 choices for the next step (any vertex of M except for the starting
vertex), then n − 1 choices for the next step (any vertex of N except for the second
vertex), and so on until we run out of vertices. Thus there are m·n·(m−1)·(n−1) · · · =
m!n! = n!(n + 1)! such simple paths in this case.

Case (ii). Suppose m = n. Then a simple path can start at any vertex. Suppose
it starts at a vertex of M (m choices). Then the next step can be any of n choices
in N , the next step any of the m − 1 remaining vertices in M , the next step any of

4



the remaining n − 1 vertices in N , and so on until we run out of vertices. This gives
m · n · (m− 1) · (n− 1) · · · = m!n! = (n!)2 such paths starting at a vertex of M . But we

have the same number of paths starting at a vertex of N . So there are 2(n!)2 simple
paths altogether in this case.
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