
MATH 271 ASSIGNMENT 1 SOLUTIONS

1.

(a) Let S be the statement

For all integers n, if n is even then 3n− 11 is odd.

Is S true? Give a proof or counterexample.

(b) Write out the contrapositive of statement S, and give a proof or disproof.

(c) Write out the converse of statement S, and give a proof or disproof.

(d) Prove or disprove the statement

For all integers n, if n is odd then 2n− 11 is even.

Then write out the converse of this statement and prove or disprove it.

(a) S is true. Here is a proof.

Let n be an arbitrary even integer. This means that n = 2k for some integer k. Then

3n− 11 = 3(2k)− 11 = 6k − 11 = 2(3k − 6) + 1

where 3k − 6 is an integer. Therefore 3n− 11 is odd by the definition of odd.

(b) The contrapositive of S is:

For all integers n, if 3n− 11 is not odd then n is not even,

which could also be written (using a result on page 159 of the text)

For all integers n, if 3n− 11 is even then n is odd.

It is true, because it is equivalent to the original statement S which is true.

(c) The converse of S is

For all integers n, if 3n− 11 is odd then n is even.

This statement is true. Here is a proof.

Assume that 3n − 11 is odd, where n is an integer. This means that 3n − 11 = 2k + 1 for
some integer k. We can rewrite this equation as n = 2k + 12 − 2n = 2(k + 6 − n), where
k + 6− n is an integer since k and n are integers. Therefore n equals 2 times an integer, so
n is even.

Note. The converse could also be proven by writing its contrapositive

For all integers n, if n is not even then 3n− 11 is not odd

in the form

For all integers n, if n is odd then 3n− 11 is even

and proving this.
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(d) This statement is false. A counterexample is n = 1. For then n is odd, but 2n − 11 =
2− 11 = −9 is not even.

The converse of this statement is

For all integers n, if 2n− 11 is even then n is odd.

This statement is true vacuously. For every integer n, 2n− 11 = 2(n− 6) + 1 where n− 6 is
an integer, thus 2n− 11 is odd and so cannot be even. Since the “if” part of the conditional
never holds, the statement is true vacuously.

2. Prove or disprove the following statements:

(a) There exists a prime number a such that a + 271 is prime.

(b) There exists a prime number a such that a + 271 is composite.

(c) There exists a composite number a such that a + 271 is prime.

(d) There exists a composite number a such that a + 271 is composite.

(e) Choose one of statements (a) to (d) (your choice), replace 271 with your U of C ID number, and
prove or disprove the resulting statement.

(a) This statement is false. Here is a proof.

Assume a is a prime number. We have two cases.

Case (i): a = 2. Then a + 271 = 2 + 271 = 273 = 3 · 91, so a + 271 is not prime.

Case (ii): a > 2. Then a must be odd, so a = 2k + 1 for some integer k. Then a + 271 =
2k + 1 + 271 = 2k + 272 = 2(k + 136), where k + 136 is an integer. Therefore a + 271 is not
prime.

In neither case can we get that a + 271 is prime, so the statement is false.

(b) This statement is true. An example is a = 3. Then a is prime and a + 271 = 274 = 2 · 137
is composite.

(c) This statement is true. An example is a = 6. Then a is composite and a + 271 = 277 is
prime (it turns out).

Note. An alternate proof would go like this: since there are infinitely many primes (Theorem
3.7.4 of the text), there must be a prime p ≥ 275. Then p is odd, so p − 271 must be even
(prove it), and p − 271 ≥ 4, so p − 271 is composite. Put a = p − 271; then a is composite
and a + 271 = p is prime.

(d) This statement is true. An example is a = 9. Then a is composite and a + 271 = 280 is
composite too.

(e) Regardless of what your ID number is, probably (d) is the easiest statement to prove. Let’s
do it for the hypothetical ID number 123456. Choosing a = 4, we get that a is composite
and that a + 123456 = 123460 is also composite.
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3. Note: Z denotes the set of all integers, and Z+ denotes the set of all positive integers.

(a) Prove the following statements:

(i) ∃a ∈ Z so that ∀b ∈ Z, (a− b)|(a + b).

(ii) ∀a ∈ Z+ ∃b ∈ Z+ so that (a− b)|(a + b).

(iii) ∀a ∈ Z+ ∃b ∈ Z+ so that (a + b)|(a− b).

(b) Write out the negation of the following statement:
∀a, b ∈ Z+, if a|2 and b|3 then (a + b)|5.

Then show that the negation is true, so that the original statement is false.

(c) Prove the following statement:
∃N ∈ Z+ so that ∀a, b ∈ Z+, if a|2 and b|3 then (a + b)|N .

(a) (i) Choose a = 0. Then the statement to be proved is: ∀b ∈ Z, (−b)|b. To prove this, let b
be an arbitrary integer. Then b = (−b)(−1) where −1 is an integer, so (−b)|b.

(ii) Let a be an arbitrary positive integer. We need to find a positive integer b (maybe
depending on a) so that (a− b)|(a + b). Choose b = a + 1, which is a positive integer. Then
a − b = −1 and a + b = 2a + 1, so we need to show that (−1)|(2a + 1). But this is clear,
since 2a + 1 = (−1)(−2a− 1) where −2a− 1 is an integer.

(iii) Let a be an arbitrary positive integer. We need to find a positive integer b (maybe
depending on a) so that (a + b)|(a − b). Choose b = a, which is a positive integer. Then
a + b = 2a and a− b = 0, so we need to show that (2a)|0. But this is clear, since 0 = 0 · 2a.

(b) The negation is:
∃a, b ∈ Z+ so that a|2 and b|3 but (a + b) 6 | 5.

This statement is true. For example we can choose a = 1 and b = 1; then a|2 and b|3 are
both true, but a + b = 2, and 2 6 | 5.

(c) For a|2 we need either a = 1 or a = 2, and for b|3 we need either b = 1 or b = 3. Thus we
will need N to satisfy all of the following:

• (1 + 1)|N , which says 2|N ;

• (2 + 1)|N , which says 3|N ;

• (1 + 3)|N , which says 4|N ;

• (2 + 3)|N , which says 5|N .

So for example, N = 2 · 3 · 4 · 5 = 120 will work. Actually N = 3 · 4 · 5 = 60 will work too,
and this is the smallest value of N which will work.
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MATH 271 ASSIGNMENT 2 SOLUTIONS

1. (a) Find all positive integers a so that ba/271c = 10. How many such integers are there?

(b) Find all positive integers a so that b271/ac = 10.

(c) Find all positive integers a so that d271/ae = 10.

(d) Prove or disprove: ∀n ∈ Z, the equations b271/xc = n and d271/xe = n have the same number
of integer solutions x.

(e) Prove or disprove: ∃n ∈ Z so that ∀a ∈ Z, b271/ac 6= n.

(a) For ba/271c = 10 to be true we would need 10 ≤ a/271 < 11, or 2710 ≤ a < 271 · 11 =
2981. So the values of a are 2710, 2711, 2712, . . . , 2980, a total of 271 integers.

(b) Now we will need 10 ≤ 271/a < 11, or 10a ≤ 271 < 11a. This means a ≤ 271/10 and
a > 271/11, in other words 24.6 < a ≤ 27.1. So the allowed values of a are 25, 26, 27.

(c) Similarly, this time we will need 9 < 271/a ≤ 10, or 9a < 271 ≤ 10a. This means
a < 271/9 and a ≥ 271/10, in other words 27.1 ≤ a < 30.1. So the allowed values of a
are 28, 29, 30.

(d) Despite the “evidence” from parts (b) and (c) (where there were 3 solutions each
time), this statement is false. One counterexample is n = 11, as the only solutions
for b271/xc = 11 are x = 23 and 24, while d271/xe = 11 has the three solutions
x = 25, 26 and 27. Another counterexample is n = 8, since b271/xc = 8 has three
solutions x = 31, 32 and 33 while d271/xe = 8 has the five solutions x = 34 to 38.

An interesting counterexample is n = 1. Notice that the equation d271/xe = 1 means
0 < 271/x ≤ 1, which is satisfied for every integer x greater than or equal to 271. So
there are infinitely many solutions. But the equation b271/xc = 1 means 1 ≤ 271/x < 2,
and this inequality is satisfied only for the integers x = 136, 137, . . . , 271.

(e) This statement is true, and there are lots of integers n satisfying the condition. For
example, any n > 271 will work, because b271/ac > 271 is impossible for an integer a.

Note. Can you find the smallest positive integer n for which this statement is true? If
you think you have an answer to this question, talk to your professor or TA.

2. Let
Sn =

3
1 · 2

− 5
2 · 3

+
7

3 · 4
− 9

4 · 5
+ · · · − 4n− 3

(2n− 2)(2n− 1)
+

4n− 1
(2n− 1)2n

,

where the signs alternate.

(a) Calculate and simplify S1, S2 and S3.

(b) Use part (a) (and more calculations if you need them) to guess a simple formula for Sn.

(c) Prove your formula for all positive integers n using mathematical induction.

(d) Give another proof of your formula for all positive integers n using telescoping. (See example
4.1.10 on page 205 of the text.)
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(a) We get

S1 =
3

1 · 2
=

3

2
, S2 =

3

1 · 2
− 5

2 · 3
+

7

3 · 4
=

3

2
− 5

6
+

7

12
=

18− 10 + 7

12
=

15

12
=

5

4
,

and (using our calculation for S2)

S3 =
3

1 · 2
− 5

2 · 3
+

7

3 · 4
− 9

4 · 5
+

11

5 · 6
=

5

4
− 9

20
+

11

30
=

75− 27 + 22

60
=

70

60
=

7

6
.

(b) From the values in (a) we guess that Sn =
2n + 1

2n
.

(c) Basis step. We need to prove that S1 =
2 · 1 + 1

2 · 1
, which is true since both are 3/2.

Induction step. Assume that Sk =
2k + 1

2k
for some integer k ≥ 1. We want to prove

that Sk+1 =
2(k + 1) + 1

2(k + 1)
, which is the same as Sk+1 =

2k + 3

2(k + 1)
. Well,

Sk+1 =
3

1 · 2
− 5

2 · 3
+ · · ·+ 4k − 1

(2k − 1)2k
− 4k + 1

2k(2k + 1)
+

4k + 3

(2k + 1)(2k + 2)

= Sk −
4k + 1

2k(2k + 1)
+

4k + 3

(2k + 1)(2k + 2)

=
2k + 1

2k
− 4k + 1

2k(2k + 1)
+

4k + 3

(2k + 1)(2k + 2)
by our assumption

=
(2k + 1)2(2k + 2)− (4k + 1)(2k + 2) + (4k + 3)2k

2k(2k + 1)(2k + 2)

=
[4k2 + 4k + 1− (4k + 1)](2k + 2) + (8k2 + 6k)

2k(2k + 1)(2k + 2)

=
4k2(2k + 2) + (8k2 + 6k)

2k(2k + 1)(2k + 2)
=

8k3 + 16k2 + 6k

2k(2k + 1)(2k + 2)

=
2k(2k + 1)(2k + 3)

2k(2k + 1)(2k + 2)
=

2k + 3

2k + 2
,

which proves the induction step.

Therefore the statement is true for all integers n ≥ 1.

(d) Notice that
3

1 · 2
=

1

1
+

1

2
,

5

2 · 3
=

1

2
+

1

3
,

7

3 · 4
=

1

3
+

1

4
,

and in general
2k + 1

k(k + 1)
=

1

k
+

1

k + 1

for any positive integer k. Thus
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Sn =
3

1 · 2
− 5

2 · 3
+

7

3 · 4
− 9

4 · 5
+ · · · − 4n− 3

(2n− 2)(2n− 1)
+

4n− 1

(2n− 1)2n

=
(

1

1
+

1

2

)
−
(

1

2
+

1

3

)
+
(

1

3
+

1

4

)
− · · · −

(
1

2n− 2
+

1

2n− 1

)
+
(

1

2n− 1
+

1

2n

)
=

1

1
+

1

2n
=

2n + 1

2n
,

so our guess is proved.

3. (a) Prove the following statement by contradiction: for all integers n, if 3|n then
3 6 | (n + 271).

(b) Prove or disprove: for all integers n, if 3|n then 5 6 | n.

(c) Prove by mathematical induction that 3|(2n − (−1)n) for all integers n ≥ 1.

(a) Assume that 3|n for some integer n. This means that n = 3k for some integer k. We
want to prove that 3 6 | (n+271). To get a proof by contradiction, we assume that what
we want to prove is false: namely we will assume that 3|(n + 271). This means we are
also assuming that n + 271 = 3` for some integer `. Now our two assumptions tell us
that

271 = (n + 271)− n = 3`− 3k = 3(`− k),

where ` − k is an integer. Thus 3|271, which however is false. Thus our assumption
that 3|(n + 271) must be false, so 3 6 | (n + 271).

(b) This is false. A counterexample is n = 15, since 3|15 but also 5|15. Another counterex-
ample is n = 0.

(c) Basis step. We need to prove that 3|(21 − (−1)1), which says 3|(2 + 1) or 3|3. This is
true.

Induction step. Assume that 3|(2k − (−1)k) for some integer k ≥ 1. This means that
2k − (−1)k = 3` for some integer `. We want to prove that 3|(2k+1 − (−1)k+1). Well,

2k+1 − (−1)k+1 = 2 · 2k − (−1) · (−1)k

= 2(2k − (−1)k) + 2(−1)k + (−1)k

= 2(3`) + 3(−1)k by our assumption

= 3(2` + (−1)k),

where 2` + (−1)k is an integer. Thus 3|(2k+1 − (−1)k+1).

Therefore, by induction, 3|(2n − (−1)n) for all integers n ≥ 1.
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MATH 271 ASSIGNMENT 3 SOLUTIONS

1. (a) Prove by induction that, for all integers n ≥ 2,

12

2!
+

22

3!
+

32

4!
+ · · ·+ n2

(n + 1)!
≤ 2− 2n

(n + 1)!
. (1)

(b) Prove that in fact inequality (1) holds for all integers n ≥ 1.

(c) Find the smallest real number A so that, for all integers n ≥ 1,

12

2!
+

22

3!
+

32

4!
+ · · ·+ n2

(n + 1)!
≤ A− 2n

(n + 1)!
.

(a) Basis step. When n = 2 inequality (1) is

12

2!
+

22

3!
≤ 2− 4

3!

which is
1

2
+

4

6
≤ 2− 4

6
, that is

7

6
≤ 8

6
,

which is true.

Inductive step. Assume that inequality (1) holds for some integer n = k, where k ≥ 2.
We want to prove that inequality (1) holds for n = k + 1. So we are assuming that

12

2!
+

22

3!
+

32

4!
+ · · ·+ k2

(k + 1)!
≤ 2− 2k

(k + 1)!
,

and we want to prove that

12

2!
+

22

3!
+

32

4!
+ · · ·+ (k + 1)2

(k + 2)!
≤ 2− 2(k + 1)

(k + 2)!
. (2)

Well,

12

2!
+

22

3!
+ · · ·+ (k + 1)2

(k + 2)!
=

12

2!
+

22

3!
+ · · ·+ k2

(k + 1)!
+

(k + 1)2

(k + 2)!

≤ 2− 2k

(k + 1)!
+

(k + 1)2

(k + 2)!
by our assumption

= 2− 2k(k + 2)− (k + 1)2

(k + 2)!

= 2− 2k2 + 4k − k2 − 2k − 1

(k + 2)!

= 2− k2 + 2k − 1

(k + 2)!
.
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So in order to prove (2), we would like to prove that

2− k2 + 2k − 1

(k + 2)!
≤ 2− 2(k + 1)

(k + 2)!
.

This is equivalent successively to

−k2 + 2k − 1

(k + 2)!
≤ −2(k + 1)

(k + 2)!
,

k2 + 2k − 1

(k + 2)!
≥ 2(k + 1)

(k + 2)!
,

and thus to
k2 + 2k − 1 ≥ 2k + 2, that is, k2 ≥ 3,

which is true since k ≥ 2. This finishes the proof of the inductive step. Thus inequality
(1) holds for all integers n ≥ 2.

(b) When n = 1, inequality (1) says
12

2!
≤ 2− 2

2!

which is 1/2 ≤ 1, which is true. Since in part (a) we proved that inequality (1) holds
for all integers n ≥ 2, we now know it holds for all integers n ≥ 1. Notice that, since
the inductive step needed that k ≥ 2, to prove inequality (1) for all n ≥ 1 we need both
cases n = 1 and n = 2 in the basis step.

(c) The inductive step in the proof in part (a) works just the same if the 2 right after the
inequality sign is replaced with any number A. So the inequality in part (c) will hold
for all integers n ≥ 1 provided that it holds for n = 1 and n = 2, which is the basis
step. When n = 1 the inequality in (c) says

12

2!
≤ A− 2

2!

which simplifies to A ≥ 3/2. When n = 2 the inequality in (c) says

12

2!
+

22

3!
≤ A− 4

3!

which simplifies to A ≥ 1/2 + 4/6 + 4/6 = 11/6. We need both of these to hold, so the
smallest A that will work is A = 11/6.
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2. You are given the following “while” loop:

[Pre-condition: m is a nonnegative integer, a = 0, b = 1, c = 2, i = 0.]

while (i 6= m)
1. a := b
2. b := c
3. c := 2b− a
4. i := i + 1

end while

[Post-condition: c = m + 2.]

Loop invariant: I(n) is “a = n, b = n + 1, c = n + 2, i = n”.

(a) Prove the correctness of this loop with respect to the pre- and post-conditions.

(b) Suppose the “while” loop is as above, except that the pre-condition is replaced by: m is a
nonnegative integer, a = 1, b = 3, c = 5, i = 0. Find a post-condition that gives the final
value of c, and an appropriate loop invariant, and prove the correctness of this loop.

(a) We first need to check that the loop invariant holds when n = 0. I(0) says a = 0, b = 1,
c = 2 and i = 0, and these are all true by the pre-conditions.

So now assume that the loop invariant I(k) holds for some integer k ≥ 0, k < m. We
want to prove that I(k + 1) holds, that is, that the loop invariant will still hold after
one more pass through the loop. So we are assuming that a = k, b = k + 1, c = k + 2
and i = k, and we now go through the loop. Step 1 sets a equal to b = k + 1, then step
2 sets b equal to c = k+2, then step 3 sets c equal to 2b−a = 2(k+2)− (k+1) = k+3,
then step 4 sets i equal to k + 1. This means that I(k + 1) is true, as required.

Finally the loop stops when i = m, and we need to check that at that point the post-
condition is satisfied. When i = m it means that the loop invariant I(m) must hold, so
from I(m) we know that c = m + 2 as required.

(b) If we set the variables to their pre-condition values of a = 1, b = 3, c = 5 and i = 0,
and run through the loop, the new values we get are a = 3, b = 5, c = 2(5)−3 = 7, and
i = 1. From this (or by running through the loop once or twice more to collect more
evidence) we can guess that the loop invariant we want will be

I(n) : a = 2n + 1, b = 2n + 3, c = 2n + 5, i = n,

and the post-condition value of c ought to be c = 2m + 5. This choice of I(n) becomes
a = 1, b = 3, c = 5 and i = 0 when n = 0, so the pre-condition is satisfied.

So now we assume that the new loop invariant I(k) holds for some integer k ≥ 0,
k < m, and we want to prove that I(k + 1) holds. So we are assuming that a = 2k + 1,
b = 2k + 3, c = 2k + 5 and i = k, and we now go through the loop. Step 1 sets a equal
to b = 2k + 3 = 2(k + 1) + 1, then step 2 sets b equal to c = 2k + 5 = 2(k + 1) + 3, then
step 3 sets c equal to 2b− a = 2(2k + 5)− (2k + 3) = 2k + 7 = 2(k + 1) + 5, then step
4 sets i equal to k + 1. This means that I(k + 1) is true, as required.
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Finally the loop stops when i = m, and we need to check that at that point the post-
condition is satisfied. When i = m it means that the loop invariant I(m) must hold, so
from I(m) we know that c = 2m + 5 as required.

3. Prove or disprove each of the following six statements. Proofs should use the “element” methods
given in Section 5.2. [Note: P(X) denotes the power set of the set X.]

(a) For all sets A,B, C, (A−B)× C ⊆ (A× C)− (B × C).

(b) For all sets A,B, C, (A× C)− (B × C) ⊆ (A−B)× C.

(c) For all sets A,B, C, (A−B)× C = (A× C)− (B × C).

(d) For all sets A and B, P(A−B) ⊆ P(A)− P(B).

(e) For all sets A and B, P(A)− P(B) ⊆ P(A−B).

(f) For all sets A and B, P(A−B) = P(A)− P(B).

(a) This inequality is true. Here is a proof.

Let A, B, C be arbitrary sets. Note that the left side of this inequality is a Cartesian
product, which means that its elements will be ordered pairs. So let (a, c) be an arbitrary
element of (A−B)×C. This means that a ∈ A−B and c ∈ C. Since a ∈ A−B, this
means that a ∈ A and a 6∈ B. Since a ∈ A and c ∈ C, we get that (a, c) ∈ A× C. But
since a 6∈ B, we know that (a, c) cannot be an element of B × C. Since (a, c) ∈ A× C
but (a, c) 6∈ B × C, we know (a, c) ∈ (A × C) − (B × C). Therefore (A − B) × C ⊆
(A× C)− (B × C).

(b) Similarly, this inequality is true, and we can reverse our steps in part (a) to get a proof.

Let (a, c) be an arbitrary element of (A×C)− (B×C). This means that (a, c) ∈ A×C
but (a, c) 6∈ B × C. Since (a, c) ∈ A × C, we know that a ∈ A and c ∈ C. But since
(a, c) 6∈ B × C although c ∈ C, we also know a 6∈ B. Thus a ∈ A and a 6∈ B, which
means a ∈ A−B. Thus (a, c) ∈ (A−B)×C. Therefore (A×C)−(B×C) ⊆ (A−B)×C.

(c) Since the inequalities in parts (a) and (b) both hold, we get that the equality in (c)
holds for all sets A, B, C.

(d) This inequality is false no matter what sets we choose for A and B! To see this, let A
and B be any sets. Notice that the empty set ∅ ⊆ A − B regardless of what A and B
are, so ∅ ∈ P(A−B). However, since ∅ ∈ P(A) and ∅ ∈ P(B), we get ∅ 6∈ P(A)−P(B).
Therefore P(A−B) 6⊆ P(A)− P(B).

Note. You can prove that if X is any nonempty set so that X ∈ P(A − B), then
X ∈ P(A) − P(B). So the only counterexample to the inequality in part (d) is the
empty set.

(e) This inequality is also false, but counterexamples are easier to find. For example, let
A = {1, 2} and B = {1}. Then {1, 2} ⊆ A and {1, 2} 6⊆ B, so {1, 2} ∈ P(A) and
{1, 2} 6∈ P(B), so {1, 2} ∈ P(A)−P(B). However A−B = {2}, so {1, 2} 6∈ P(A−B).
Therefore P(A)− P(B) 6⊆ P(A−B).

(f) Since the inequality in (e) (or (d)) fails, the equality in (f) fails too.
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MATH 271 ASSIGNMENT 4 SOLUTIONS

1. For each positive integer n, let [n] = {1, 2, 3, . . . , n}, and define

S∪(n) = the set of all ordered pairs (A,B) of sets such that A ∪B = [n];
S∩(n) = the set of all ordered pairs (A,B) of subsets of [n] such that A ∩B = ∅;
S⊆(n) = the set of all ordered pairs (A,B) of subsets of [n] such that A ⊆ B.

(a) Find S∪(1) and S∪(2).

(b) Prove that S∪(n) has exactly 3n elements.

(c) Prove that (A,B) ∈ S∪(n) if and only if (Ac, Bc) ∈ S∩(n) (here [n] is the universal set).
Therefore find the number of elements in S∩(n).

(d) Prove that (A,B) ∈ S∪(n) if and only if (Ac, B) ∈ S⊆(n) (here [n] is the universal set).
Therefore find the number of elements in S⊆(n).

(a) We get
S∪(1) = {({1}, ∅), (∅, {1}), ({1}, {1})}

and

S∪(2) = {({1, 2}, ∅), (∅, {1, 2}), ({1, 2}, {1}), ({1}, {1, 2}), ({1, 2}, {2}),

({2}, {1, 2}), ({1, 2}, {1, 2}), ({1}, {2}), ({2}, {1})}.

(b) We count how many ways there are to construct sets A and B so that A ∪ B =
{1, 2, . . . , n}. To get this union, we need each number from 1 to n to either be in
A, or in B, or in both. So we have three possibilities for each of the n numbers from 1
to n. Since these choices are all independent, there are 3 · 3 · . . . · 3 = 3n such ordered
pairs (A, B).

(c) First assume that (A, B) ∈ S∪(n). Then A ∪ B = [n], so by De Morgan’s Law (page
272, #9(a)),

Ac ∩Bc = (A ∪B)c = [n]c = ∅,

therefore (Ac, Bc) ∈ S∩(n).

Conversely, assume that (Ac, Bc) ∈ S∩(n). Then Ac ∩ Bc = ∅, so by various properties
on page 272,

A ∪B = (Ac)c ∪ (Bc)c = (Ac ∩Bc)c = ∅c = [n],

therefore (A, B) ∈ S∪(n).

This means that there is a one-to-one correspondence between the elements of S∪(n)
and the elements of S∩(n), so by part (b) S∩(n) must also have 3n elements.

(d) First assume that (A, B) ∈ S∪(n), which means A ∪ B = [n]. We want to prove that
(Ac, B) ∈ S⊆(n), which means we want to prove that Ac ⊆ B. Let x ∈ Ac be arbitrary.
This means that x ∈ [n] but x 6∈ A. Since A ∪ B = [n], x ∈ [n] means x ∈ A ∪ B, and
since x 6∈ A we conclude that x ∈ B. Therefore Ac ⊆ B and (Ac, B) ∈ S⊆(n).
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Conversely, assume that (Ac, B) ∈ S⊆(n), which means Ac ⊆ B. We want to prove that
(A, B) ∈ S∪(n), which means we want to prove that A∪B = [n]. Since A∪B ⊆ [n], we
only need to prove that [n] ⊆ A∪B. Let x ∈ [n] be arbitrary. If x ∈ A, then x ∈ A∪B
which is what we want. On the other hand, if x 6∈ A, then x ∈ Ac, and since Ac ⊆ B,
this means that x ∈ B and thus x ∈ A ∪ B. So in either case we get that x ∈ A ∪ B.
Therefore [n] ⊆ A ∪B, so A ∪B = [n], so (A, B) ∈ S∪(n).

Once again this means that there is a one-to-one correspondence between the elements
of S∪(n) and the elements of S⊆(n), so by part (b) S⊆(n) must also have 3n elements.

2. For each positive integer n, let f(n) be the number of ordered pairs (A,B) of subsets of {1, 2, 3, . . . , n}
so that A ∪B has an even number of elements.

(a) Find f(1) and f(2) by listing all the ordered pairs of subsets.

(b) Use Problem 1(b) to prove that for any n,

f(n) =
bn/2c∑
k=0

(
n

2k

)
32k.

Show that your answers to part (a) agree with this formula.

(c) Mimic Example 6.7.4 on page 368 to prove that
∑n

i=0

(n
i

)
3i = 4n and thus

b(n+1)/2c∑
k=1

(
n

2k − 1

)
32k−1 = 4n − f(n).

(d) Use Pascal’s Formula (page 360), (b) and (c), and mathematical induction to prove that

f(n) =

{
2n−1(2n − 1) if n is odd,
2n−1(2n + 1) if n is even.

(a) Since A and B are subsets of {1, 2, . . . , n}, we always have A ∪ B ⊆ {1, 2, . . . , n}. So
when n = 1, the only way for A∪B to have an even number of elements is if A∪B = ∅,
so the only ordered pair (A, B) that works is (∅, ∅), and thus f(1) = 1. When n = 2,
we could have A ∪ B = ∅ or A ∪ B = {1, 2}, so the ordered pairs (A, B) that work are
(∅, ∅) plus the nine ordered pairs in S∪(2) from problem 1(a). Thus f(2) = 10.

(b) First, from problem 1(b) it is clear that for any set S with m elements there must be
exactly 3m ordered pairs (A, B) of sets so that A ∪ B = S (since the names of the
m elements of S don’t matter). Let k be an integer so that 0 ≤ 2k ≤ n. There are(

n
2k

)
subsets of {1, 2, . . . , n} with 2k elements, and for each of these subsets there are

32k ordered pairs (A, B) of sets whose union is that subset. Thus for each k, there are(
n
2k

)
32k ordered pairs (A, B) of subsets of {1, 2, . . . , n} so that A ∪ B has 2k elements.

Adding over all possible values of k (namely k = 0, 1, . . . , bn/2c), we get that

f(n) =
bn/2c∑
k=0

(
n

2k

)
32k.

12



When n = 1 this says

f(1) =
0∑

k=0

(
1

2k

)
32k =

(
1

0

)
30 = 1,

and when n = 2 it says

f(2) =
1∑

k=0

(
2

2k

)
32k =

(
2

0

)
30 +

(
2

2

)
32 = 1 + 9 = 10,

both agreeing with part (a).

(c) We put a = 1 and b = 3 into the Binomial Theorem (Theorem 6.7.1 on page 364) to
get

n∑
i=0

(
n

i

)
3i =

n∑
i=0

(
n

i

)
1n−i3i = (1 + 3)n = 4n.

Splitting this sum into two parts, one with all the even i’s and one with all the odd i’s,
we get

bn/2c∑
k=0

(
n

2k

)
32k +

b(n+1)/2c∑
k=1

(
n

2k − 1

)
32k−1 = 4n.

But the first sum is just f(n) by part (b), so subtracting it from both sides gives us

b(n+1)/2c∑
k=1

(
n

2k − 1

)
32k−1 = 4n − f(n)

as required.

(d) Basis step. When n = 1 (which is odd) the formula says f(1) = 20(21 − 1) = 1, which
is correct by part (a).

Inductive step. Assume that the formula is correct for some integer n ≥ 1. We want to
prove it is correct for the next integer n + 1. Well,

f(n + 1) =
b(n+1)/2c∑

k=0

(
n + 1

2k

)
32k by part (b)

=
b(n+1)/2c∑

k=0

[(
n

2k

)
+

(
n

2k − 1

)]
32k by Pascal’s Formula

=
bn/2c∑
k=0

(
n

2k

)
32k +

b(n+1)/2c∑
k=1

(
n

2k − 1

)
3 · 32k−1

= f(n) + 3(4n − f(n)) by parts (b) and (c)

= 3(4n)− 2f(n)

=

{
3(4n)− 2n(2n − 1) if n is odd
3(4n)− 2n(2n + 1) if n is even

by assumption

=

{
2(4n) + 2n = 2n(2n+1 + 1) if n + 1 is even
2(4n)− 2n = 2n(2n+1 − 1) if n + 1 is odd,
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which completes the inductive step. Therefore the formula is correct for all integers
n ≥ 1.

Note: If n is odd, and if 2n − 1 happens to be a prime number, then the value f(n) =
2n−1(2n − 1) is what is called a perfect number. To find out what these are, ask your
professor or TA, or search the internet.

3. Again let [n] = {1, 2, 3, . . . , n} for any positive integer n.

(a) Find the number of functions f : [n] → [n] such that f(k) ≤ k ∀k ∈ [n].

(b) Find the number of one-to-one functions f : [n] → [n] such that f(k) ≤ k ∀k ∈ [n].

(c) Find the number of functions f : [n] → [n] such that f(k) ≤ k + 1 ∀k ∈ [n].

(d) Find the number of onto functions f : [n] → [n] such that f(k) ≤ k + 1 ∀k ∈ [n].

(a) Since, for every k, f(k) must be one of the k values 1, 2, . . . , k, there is one choice for
f(1) (namely 1), two choices for f(2) (namely 1 or 2), and so on up to n choices for f(n)
(namely any of 1, 2, . . . , n). Thus by the Multiplication Rule there are 1 · 2 · . . . · n = n!
ways to assign all the values f(1), f(2), . . . , f(n), that is, n! different functions.

(b) If f must be one-to-one, then we still must assign f(1) = 1, but then we cannot assign
f(2) to be 1 too, so we must put f(2) = 2. Next we cannot let f(3) be 1 or 2, so we
must put f(3) = 3. Continuing in this way, we are forced to put f(k) = k for each k,
so there is just one one-to-one function f : [n] → [n], namely the identity function.

(c) Proceeding as in part (a), for each k, f(k) must be one of the k+1 choices 1, 2, . . . , k+1,
provided that k < n. So f(1) can be 1 or 2, f(2) can be 1, 2 or 3, and so on up to
f(n− 1) which can be any of 1, 2, . . . , n. But f(n) must still belong to [n] so there are
only n choices for f(n). Thus by the Multiplication Rule the total number of functions

is 2 · 3 · . . . · n · n = n(n!).

(d) Note that since [n] is finite, a function f : [n] → [n] is onto if and only if it is one-to-one.
So we are really just counting one-to-one functions again. Now f(1) must be 1 or 2,
so there are two choices for f(1). Then f(2) must be 1, 2 or 3, so removing whichever
choice we made for f(1) will leave two choices for f(2). In general there will be k + 1
choices for f(k) (namely 1, 2, . . . , k + 1), but after we remove the choices we make for
f(1), f(2), . . . , f(k − 1) we will always have exactly two choices left for f(k + 1). The
exception again is that for f(n) there are only n choices originally (namely 1, 2, . . . , n),
and after we remove the choices we make for f(1), f(2), . . . , f(n− 1) we will only have

one choice left for f(n). So in total there will be 2 · 2 · . . . · 2 · 1 = 2n−1
onto functions.
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MATH 271 ASSIGNMENT 5 SOLUTIONS

1. If f : R → R is a function (where R is the set of all real numbers), we define the function f (2) to be
the composition f ◦ f , and for any integer n ≥ 2, define f (n+1) = f ◦ f (n). So f (2)(x) = (f ◦ f)(x) =
f(f(x)), f (3)(x) = (f ◦ f (2))(x) = f(f(f(x))), and so on.

Let f : R → R be defined by f(x) = 3x2 for all x ∈ R.

(a) Find and simplify f (2)(x) and f (3)(x).

(b) Use part (a) (and more calculations if you need them) to guess a formula for f (n)(x).

(c) Prove your guess using mathematical induction.

(d) Find all x ∈ R so that f (271)(x) = x.

(a) We get
f (2)(x) = f(f(x)) = f(3x2) = 3(3x2)2 = 33x4

and
f (3)(x) = f(f (2)(x)) = f(33x4) = 3(33x4)2 = 37x8.

(b) Since f (2)(x) = 33x4 = 322−1x22
and f (3)(x) = 37x8 = 323−1x23

, we guess that

f (n)(x) = 32n−1x2n

for all n ≥ 2.

(c) Basis step. This is already done, since our formula is true when n = 2.

Inductive step. Assume that f (k)(x) = 32k−1x2k
for some integer k ≥ 2. We want to

prove that f (k+1)(x) = 32k+1−1x2k+1
. Well,

f (k+1)(x) = f
(
f (k)(x)

)
by definition

= f
(
32k−1x2k

)
by assumption

= 3
(
32k−1x2k

)2

= 31+(2k−1)2x(2k)2

= 32k+1−1x2k+1

,

which finishes the inductive step. This proves that our guess is correct for every integer
n ≥ 2.

(d) Since f (271)(x) = 32271−1x2271
, we need to solve the equation 32271−1x2271

= x. One
obvious solution is x = 0. So assuming now that x 6= 0, we can divide both sides by x
and get 32271−1x2271−1 = 1, which can be rewritten as (3x)2271−1 = 1, which means that
3x = 1 since 2271 − 1 is odd. Thus the only other solution is x = 1/3.

2. Let [n] = {1, 2, . . . , n}, where n is a positive integer. Let R be the relation on the power set P([n])
defined by: for A,B ∈ P([n]), ARB if and only if 1 6∈ A−B.

(a) Is R reflexive? Symmetric? Transitive? Explain.
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(b) Find the number of ordered pairs (A,B) of sets in P([n]) such that ARB. [Hint: first count
the number of ordered pairs (A,B) of sets in P([n]) so that A 6R B.]

(c) Suppose you choose sets A,B ∈ P([n]) at random. What is the probability that ARB?

(d) Let S be the relation on the power set P([n]) defined by: for A,B ∈ P([n]), ASB if and only
if 1 ∈ A−B. Is S transitive? Explain.

(a) R is reflexive. Here is a proof. Let A ∈ P([n]) be arbitrary. Then A − A = ∅, so
1 6∈ A− A, so ARA.

R is not symmetric. Here is a counterexample. Let A = ∅ and B = {1}. Then
A−B = ∅, so 1 6∈ A−B, so ARB. However B − A = {1}, so 1 ∈ B − A, so B 6R A.

R is transitive. Here is a proof. Let A, B, C ∈ P([n]) be arbitrary so that ARB and
BRC. This means that 1 6∈ A−B and 1 6∈ B−C. We want to prove that ARC, which
means we want to prove that 1 6∈ A − C. We do this by contradiction. Suppose that
1 ∈ A−C. This means that 1 ∈ A but 1 6∈ C. Since 1 ∈ A but 1 6∈ A−B, it must mean
that 1 ∈ B. But now 1 ∈ B and 1 6∈ C means 1 ∈ B − C, which is a contradiction.
Therefore 1 6∈ A− C, so R is transitive.

(b) Since A 6R B means 1 ∈ A − B, to count the number of ordered pairs (A, B) so that
A 6R B we just count the number of (A, B) so that 1 ∈ A and 1 6∈ B. The number
of subsets A of [n] so that 1 ∈ A is just the number of subsets of {2, 3, . . . , n}, which
is 2n−1 (for example, see p. 285). The number of subsets B of [n] so that 1 6∈ B is
also just the number of subsets of {2, 3, . . . , n}, which is 2n−1. Thus the number of
ordered pairs (A, B) so that A 6R B is 2n−1 · 2n−1 = 22(n−1) by the Multiplication Rule.
There are 2n subsets of [n] altogether, so there are 2n · 2n = 22n ordered pairs (A, B)
altogether. Therefore the number of ordered pairs (A, B) of sets in P([n]) such that
ARB is 22n − 22(n−1) = 22n−2(22 − 1) = 3(22n−2).

(c) Since all choices of subsets A, B ∈ P([n]) are equally likely, the probability is

number of (A, B) so that ARB

total number of (A, B)
=

3(22n−2)

22n
=

3

4
,

regardless of the value of n.

(d) Yes, S is transitive, vacuously. Suppose that A, B, C ∈ P([n]) satisfy ASB and BSC.
This means that 1 ∈ A − B and 1 ∈ B − C. But 1 ∈ A − B means in particular that
1 6∈ B, while 1 ∈ B −C means in particular that 1 ∈ B. This is a contradiction, so the
“if” part of the definition of transitivity can never happen, so the relation S is transitive
vacuously.

3. Let F be the set of all functions f : {1, 2, . . . , n} → {1, 2, . . . , n}, where n is a positive integer. Define
a relation R on F by: for f, g ∈ F , fRg if and only if f(k) + g(k) is even for all k ∈ {1, 2, . . . , n}.

(a) Prove that R is an equivalence relation on F .

(b) Suppose that n = 2m + 1 is odd. Find the number of functions in the equivalence class [id],
where id is the identity function on {1, 2, . . . , n}. How many of these functions are one-to-one
and onto?
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(c) Suppose that n = 2m is even. Find the number of functions in the equivalence class [g], where
g(x) = 1 is a constant function. How many of these functions are one-to-one and onto?

(a) R is reflexive. Let f ∈ F be arbitrary. Then f(k) + f(k) = 2f(k) is even for every
k ∈ {1, 2, . . . , n}, since f(k) is an integer, so fRf .

R is symmetric. Let f, g ∈ F be arbitrary so that fRg. This means that f(k) + g(k)
is even for all k ∈ {1, 2, . . . , n}. But then g(k) + f(k) = f(k) + g(k) is even for all
k ∈ {1, 2, . . . , n}, so gRf .

R is transitive. Let f, g, h ∈ F be arbitrary so that fRg and gRh. This means
that f(k) + g(k) is even for all k ∈ {1, 2, . . . , n}, and g(k) + h(k) is even for all
k ∈ {1, 2, . . . , n}. But then f(k) + g(k) + g(k) + h(k) = f(k) + h(k) + 2g(k) is even for
all k ∈ {1, 2, . . . , n}, so f(k) + h(k) is even for all k ∈ {1, 2, . . . , n}, since the sum and
difference of even numbers is even. Therefore fRh.

(b) We want to count the number of functions f ∈ F so that fR id. id is the function
id(k) = k for all k ∈ {1, 2, . . . , n}. Thus fR id means that f(k) + k is even for all
k. This in turn means that f(k) must be even whenever k is even, and odd whenever
k is odd. Since n = 2m + 1, there are m even numbers and m + 1 odd numbers in
{1, 2, . . . , n}. So for each of the m even k’s there are m choices for f(k), and for each
of the m + 1 odd k’s there are m + 1 choices for f(k). Thus the total number of ways
we can define f is mm(m + 1)m+1.

If we insist that f be one-to-one and onto, we only need to make it one-to-one, since
any one-to-one function f : {1, 2, . . . , n} → {1, 2, . . . , n} will have to be onto as well.
Now when we count how many ways there are to define f(2), f(4), . . . , f(2m) (that is,
f(k) for the m even k’s), we get m ways to define f(2), m − 1 ways to define f(4),
and so on down to just one way to define f(2m). So there are m! ways to define
f(2), f(4), . . . , f(2m). Similarly, there are m + 1 ways to define f(1), m ways to define
f(3), and so on down to just one way to define f(2m+1). So there are (m+1)! ways to
define f(1), f(3), . . . , f(2m + 1). Thus altogether there are m!(m + 1)! ways to define
f so that it is one-to-one and onto.

(c) This time we want to count the number of functions f ∈ F so that fRg. But since
g(k) = 1 for all k ∈ {1, 2, . . . , n}, to get f(k) + g(k) to be even for all k, we will need
that f(k) is odd for all k. Since n = 2m, there are m odd numbers in {1, 2, . . . , n}. So
we have m choices for each f(k), and thus the total number of ways we can define f is
mn = m2m.

If we insist that f be one-to-one and onto, once again we only need to make it one-to-
one. But since f(k) must be odd for every k, and the total number of k’s (2m) is greater
than the number of odd numbers available (m), it is impossible to assign a different odd
number to each f(k). Thus the number of one-to-one onto functions this time is zero.
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