
MATH 271 ASSIGNMENT 1 SOLUTIONS

1. For each true statement below, give a proof. For each false statement below, write out its negation,
then give a proof of the negation.

(a) ∀a, b ∈ Z+, if a|b and (a + 1)|b then (a + 2)|b.
(b) ∀a, b ∈ Z+, if a|b and a|(b + 1) then a|(b + 2).

(c) ∃a ∈ Z+ such that ∀b ∈ Z+, a|b and (a + 1)|b.
(d) ∀a ∈ Z+ ∃b ∈ Z+ such that a|b and (a + 1)|b.
(e) ∀a ∈ Z+ ∃b ∈ Z+ such that a < b, a|b and (a + 1)|(b + 1).

(a) This statement is false. The negation is
∃a, b ∈ Z+ such that a|b and (a + 1)|b but (a + 2) 6 | b.

An example (or a counterexample to the original statement) is a = 1 and b = 2. Then
a|b since 1|2, and (a + 1)|b since 2|2, but (a + 2) 6 | b since 3 6 | 2.

(b) This statement is true. Here is a proof.

Let a, b ∈ Z+ be arbitrary so that a|b and a|(b + 1). This means that b = ak and
b + 1 = a` for some k, ` ∈ Z. Thus ak + 1 = a`, so

a(`− k) = a`− ak = 1.

Since ` − k is an integer, this says that a|1 and so a must be equal to 1 (since a > 0).
But then it is clear that a|(b + 2). This is what we wanted to prove.

(c) This statement is false. The negation is
∀a ∈ Z+ ∃b ∈ Z+ such that a 6 | b or (a + 1) 6 | b.

Here is a proof of the negation. Let a ∈ Z+ be arbitrary. We choose b = 1 (regardless
of the value of a). Since a + 1 ≥ 2, (a + 1) 6 | b. Thus the negation is true, and so the
original statement is false..

(d) This statement is true. Here is a proof.

Let a ∈ Z+ be arbitrary. Choose b = a(a + 1), which is a positive integer. Then a|b
(since a + 1 ∈ Z) and (a + 1)|b (since a ∈ Z).

(e) This statement is true. Here is a proof.

Let a ∈ Z+ be arbitrary. Choose b = a(a + 2), which is a positive integer. Then a|b
(since a+2 ∈ Z) and (a+1)|(b+1) (since b+1 = a2 +2a+1 = (a+1)2 and a+1 ∈ Z).

But the question is: how could we guess that b = a(a + 2)? One way is:

1) get data and look for a pattern.

• When a = 1, we want 1|b and 2|(b + 1), and the smallest integer b > 1 that works
is b = 3.

• When a = 2, we want 2|b and 3|(b + 1), and the smallest integer b > 2 that works
is b = 8.
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• When a = 3, we want 3|b and 4|(b + 1), and the smallest integer b > 3 that works
is b = 15.

And so on. Eventually (using more data if you need it) you will see that 3 = 22 − 1,
8 = 32 − 1, and 15 = 42 − 1 (or maybe 3 = 1 · 3, 8 = 2 · 4, and 15 = 3 · 5), so it looks
like b should be (a + 1)2 − 1 = a(a + 2). Or you might:

2) do some algebra to find b. We want a|b and (a + 1)|(b + 1), which says we want
integers k and ` so that b = ak and b + 1 = (a + 1)`. Thus ak + 1 = (a + 1)`, and so

` =
ak + 1

a + 1
= k − k − 1

a + 1
.

Since ` and k are both integers, k−1
a+1

must be an integer too, so let’s try k − 1 = a + 1
which says k = a + 2. This would mean b = a(a + 2).

2. (a) Prove or disprove the following statement: ∀a ∈ R, if bac = 2 then b2ac = 4.

(b) Write out the contrapositive of the statement in part (a). Is it true or false? Explain.

(c) Write out the converse of the statement in part (a). Is it true or false? Explain.

(d) Prove or disprove the following statement: ∀r ∈ R+ ∃n ∈ Z+ so that brnc is prime.

(e) Prove or disprove the following statement: ∃n ∈ Z+ so that ∀r ∈ R+, brnc is prime.

(a) This statement is false. A counterexample is a = 2.5. Then bac = 2 but b2ac = b5c =
5 6= 4.

(b) The contrapositive is: ∀a ∈ R, if b2ac 6= 4 then bac 6= 2. The contrapositive is false
because it is logically equivalent to the original statement which is false.

(c) The converse is: ∀a ∈ R, if b2ac = 4 then bac = 2. The converse is true. Here is a
proof.

Let a ∈ R be arbitrary so that b2ac = 4. This means that 4 ≤ 2a < 5. Therefore,
dividing by 2 we get that 2 ≤ a < 2.5. So certainly 2 ≤ a < 3 which means that bac = 2
which is what we want to prove.

(d) This statement is false. To show this we will prove that the negation is true. The
negation is

∃r ∈ R+ so that ∀n ∈ Z+, brnc is not prime.

An example is r = 4. Then for any n ∈ Z+, rn = 4n is an integer so brnc = 4n = 2 · 2n
which is not prime.

Bonus problem. Try to answer part (d) when “prime” is replaced by “composite”. If
you think you have an idea, talk to your professor or TA.

(e) This statement is false. To show this we will again prove that the negation is true.
The negation is

∀n ∈ Z+ ∃r ∈ R+ so that brnc is not prime.

Let n ∈ Z+ be arbitrary. We choose r = 4 (regardless of what n is). Then brnc = 4n =
2 · 2n which is not prime.

Another solution would be to choose r = 1/n. Then brnc = 1 which is not prime.
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3. Let N be your student ID number.

(a) Use the Euclidean Algorithm to find gcd(N, 271).

(b) Use your answer to part (a) to write gcd(N, 271) in the form Na + 271b where a, b ∈ Z.

(c) [In this part you may use results from §3.1 such as Theorem 3.1.1 on page 133 or exercises 25,
26, 27, 39, 40 or 42 from page 140. If you use any of these results, be sure to say which ones.]
Let’s consider all the Math 271 students’ answers to part (b). Prove that no student could
have correctly given integers a and b which are both even.

(a) Let’s do it for the hypothetical student number N = 123456. The Euclidean algorithm
gives:

123456 = 455 · 271 + 151 (so 151 = 123456− 455 · 271)

271 = 1 · 151 + 120 (so 120 = 271− 151)

151 = 1 · 120 + 31 (so 31 = 151− 120)

120 = 3 · 31 + 27 (so 27 = 120− 3 · 31)

31 = 1 · 27 + 4 (so 4 = 31− 27)

27 = 6 · 4 + 3 (so 3 = 27− 6 · 4)

4 = 1 · 3 + 1 (so 1 = 4− 3)

3 = 3 · 1,

so gcd(123456, 271) = 1, the last nonzero remainder.

(b) Now, starting with the second-last equation above, solving it for the gcd 1, and plugging
in the remainders one by one from the earlier equations, we get:

1 = 4− 3

= 4− (27− 6 · 4) = 7 · 4− 27

= 7 · (31− 27)− 27 = 7 · 31− 8 · 27

= 7 · 31− 8 · (120− 3 · 31) = 7 · 31− 8 · 120 + 24 · 31 = 31 · 31− 8 · 120

= 31 · (151− 120)− 8 · 120 = 31 · 151− 39 · 120

= 31 · 151− 39 · (271− 151) = 70 · 151− 39 · 271

= 70 · (123456− 455 · 271)− 39 · 271 = 70 · 123456− 31850 · 271− 39 · 271

= 70 · 123456− 31889 · 271.

So a = 70 and b = −31889 in this case.

(c) We’ll prove this by contradiction. Suppose that some student (with student ID N)
found a correct answer where both a and b were even. Suppose that gcd(N, 271) = d.
So the student would have obtained the equation Na + 271b = d, so d must be even
since both a and b are even. (This uses Theorem 3.1.1 on page 133 and exercise 42
(twice) on page 140.) But since 271 is odd and d|271 this means that d must be odd.
(In fact, 271 is prime which means that d can only be 1 or 271, but we don’t need to
know that.) This is a contradiction, so a and b cannot both be even.
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MATH 271 ASSIGNMENT 2 SOLUTIONS

1. For an integer n ≥ 1, let S(n) be the statement

2 +
1
24

− 2
n + 1

≤ 1
13

+
3
23

+
5
33

+ · · ·+ 2n− 1
n3

≤ 3− 2
n

.

(a) Prove by induction (or by well-ordering) that S(n) is true for all integers n ≥ 2.

(b) Let N be your student ID number. Use (a) to find⌊
1
13

+
3
23

+
5
33

+ · · ·+ 2N − 1
N3

⌋
.

(a) Basis step. When n = 2 S(2) is

2 +
1

24
− 2

3
≤ 1

13
+

3

23
≤ 3− 2

2

which is
11

8
≤ 1 +

3

8
≤ 2,

which is true.

Inductive step. Assume that S(k) holds for some integer k ≥ 2. We want to prove that
S(k + 1) holds. So we are assuming that

2 +
1

24
− 2

k + 1
≤ 1

13
+

3

23
+

5

33
+ · · ·+ 2k − 1

k3
≤ 3− 2

k
, (1)

and we want to prove that

2 +
1

24
− 2

k + 2
≤ 1

13
+

3

23
+

5

33
+ · · ·+ 2(k + 1)− 1

(k + 1)3
≤ 3− 2

k + 1
. (2)

From (1) we get

2+
1

24
− 2

k + 1
+

2k + 1

(k + 1)3
≤ 1

13
+

3

23
+

5

33
+ · · ·+ 2k − 1

k3
+

2k + 1

(k + 1)3
≤ 3− 2

k
+

2k + 1

(k + 1)3
.

So in order to prove (2), we would like to prove that

2 +
1

24
− 2

k + 2
≤ 2 +

1

24
− 2

k + 1
+

2k + 1

(k + 1)3
(3)

and

3− 2

k
+

2k + 1

(k + 1)3
≤ 3− 2

k + 1
. (4)
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Well,

(3) ⇐⇒ 2

k + 1
− 2

k + 2
≤ 2k + 1

(k + 1)3

⇐⇒ 2

(k + 1)(k + 2)
≤ 2k + 1

(k + 1)3

⇐⇒ 2(k + 1)2 ≤ (k + 2)(2k + 1)

⇐⇒ 2k2 + 4k + 2 ≤ 2k2 + 5k + 2,

which is true for all integers k ≥ 2. Thus (3) is true. Also,

(4) ⇐⇒ 2k + 1

(k + 1)3
≤ 2

k
− 2

k + 1

⇐⇒ 2k + 1

(k + 1)3
≤ 2

k(k + 1)

⇐⇒ (2k + 1)k ≤ 2(k + 1)2

⇐⇒ 2k2 + k ≤ 2k2 + 4k + 2,

which is also true for all integers k ≥ 2. Thus (4) is true too. This finishes the proof of
the inductive step. Thus S(n) holds for all integers n ≥ 2.

(b) Since your student ID number N is greater than 47, 1
24

> 2
N+1

. Thus from (a),

2 < 2 +
1

24
− 2

N + 1
≤ 1

13
+

3

23
+

5

33
+ · · ·+ 2N − 1

N3
≤ 3− 2

N
< 3.

Therefore ⌊
1

13
+

3

23
+

5

33
+ · · ·+ 2N − 1

N3

⌋
= 2.

2. The sequence b0, b1, b2, . . . is defined by: b0 = 1, b1 = 1, b2 = 6, and bn = 3bn−2 + 2bn−3 for all
integers n ≥ 3.

(a) Find b3, b4 and b5.

(b) Use part (a) (and more data if you need it) to guess a simple formula for bn.
[Hint: how far away is b4 from the nearest power of 2? How about b5?]

(c) Use strong induction (or well-ordering) to prove your guess.

(a) We get
b3 = 3b1 + 2b0 = 3 · 1 + 2 · 1 = 5,

b4 = 3b2 + 2b1 = 3 · 6 + 2 · 1 = 20,

b5 = 3b3 + 2b2 = 3 · 5 + 2 · 6 = 27.
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(b) The nearest power of 2 to b4 = 20 is 24 = 16, which is 4 less than b4. The nearest
power of 2 to b5 = 27 is 25 = 32, which is 5 more than b5. We could also find that
b6 = 3b4 + 2b3 = 3 · 20 + 2 · 5 = 70, which is 6 more than the nearest power of 2 which
is 26 = 64. So we guess that

bn =

{
2n + n if n is even,
2n − n if n is odd,

which could also be written as: bn = 2n + (−1)nn for all integers n ≥ 0.

(c) Basis Step. We must prove that our guessed formula for bn is true when n = 0, 1 and
2. Note that 20 + (−1)00 = 1 + 0 = 1 = b0, 21 + (−1)11 = 2 − 1 = 1 = b1, and
22 + (−1)22 = 4 + 2 = 6 = b2, so this all checks.

Inductive Step. Assume that the guessed formula is correct for all integers n between
0 and k inclusive, where k ≥ 2 is some integer. We want to prove that the formula is
correct for n = k +1, that is we want to prove that bk+1 = 2k+1 +(−1)k+1(k +1). Well,

bk+1 = 3bk−1 + 2bk−2 by the recurrence

= 3[2k−1 + (−1)k−1(k − 1)] + 2[2k−2 + (−1)k−2(k − 2)] by assumption

= 3 · 2k−1 + 3(−1)k−1(−1)2(k − 1) + 2k−1 + 2(−1)k−2(−1)4(k − 2)

= 4 · 2k−1 + (−1)k+1[3(k − 1)− 2(k − 2)]

= 2k+1 + (−1)k+1(3k − 3− 2k + 4) = 2k+1 + (−1)k+1(k + 1),

so the formula is correct for n = k + 1. Therefore the formula is correct for all integers
n ≥ 0.

3. You are given the following “while” loop:

[Pre-condition: m is a nonnegative even integer, a = 0, b = 0, c = 0.]

while (a 6= m)
1. b := 2a− b
2. c := 2b− c
3. a := a + 1

end while

[Post-condition: c = 2m.]

Loop invariant: I(n) is

a = n, b =

{
n if n is even
n− 1 if n is odd

}
, c =

{
2n if n is even
0 if n is odd

}
.

(a) Prove the correctness of this loop with respect to the pre- and post-conditions.

(b) Suppose the “while” loop is as above, but c = 1 in the pre-condition, and statement 2 in the
“while” loop is replaced by: c := 2b− a. Find a post-condition that gives the final value of c,
and an appropriate loop invariant, and prove the correctness of this loop.
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(a) We first need to check that the loop invariant holds when n = 0. Since 0 is even, I(0)
says a = 0, b = 0 and c = 2 · 0 = 0, and these are all true by the pre-conditions.

So now assume that the loop invariant I(k) holds for some integer k ≥ 0 where k < m.
We want to prove that I(k+1) holds, that is, that the loop invariant will still hold after
one more pass through the loop. So we are assuming that

a = k, b = k, c = 2k if k is even, a = k, b = k − 1, c = 0 if k is odd,

and we now go through the loop.

• Step 1: b := 2a− b =

{
2k − k = k if k is even
2k − (k − 1) = k + 1 if k is odd

}

=

{
(k + 1)− 1 if k + 1 is odd
k + 1 if k + 1 is even

}
.

• Step 2: c := 2b− c =

{
2k − 2k = 0 if k is even
2(k + 1)− 0 = 2(k + 1) if k is odd

}

=

{
0 if k + 1 is odd
2(k + 1) if k + 1 is even

}
.

• Step 3: a := a + 1 = k + 1.

This means that I(k + 1) is true, as required.

Finally the loop stops when a = m, and we need to check that at that point the post-
condition is satisfied. When a = m it means that the loop invariant I(m) must hold,
so, since m is even, from I(m) we know that c = 2m as required.

(b) If we set the variables to their pre-condition values of a = 0, b = 0 and c = 1, and run
through the loop, the new values we get are b = 2(0)− 0 = 0, c = 2(0)− 0 = 0, a = 1.
If we continue to run through the loop, and keep track of the variables in a table, here
is what we get:

n 0 1 2 3 4 5
b 0 0 2 2 4 4
c 1 0 3 2 5 4
a 0 1 2 3 4 5

From this (or by running through the loop once or twice more to collect more evidence)
we can guess that the loop invariant we want will be

I(n) : a = n, b =

{
n if n is even
n− 1 if n is odd

}
, c =

{
n + 1 if n is even
n− 1 if n is odd

}
,

and the post-condition value of c ought to be c = m + 1, since m is even. This choice
of I(n) becomes a = 0, b = 0 and c = 1 when n = 0, so the pre-condition is satisfied.

So now we assume that the new loop invariant I(k) holds for some integer k ≥ 0, k < m,
and we want to prove that I(k + 1) holds. So we are assuming that

a = k, b = k, c = k + 1 if k is even, a = k, b = k − 1, c = k − 1 if k is odd,

and we now go through the loop.
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• Step 1: b := 2a− b =

{
2k − k = k if k is even
2k − (k − 1) = k + 1 if k is odd

}

=

{
(k + 1)− 1 if k + 1 is odd
k + 1 if k + 1 is even

}
.

• Step 2: c := 2b− a =

{
2k − k = k if k is even
2(k + 1)− k = k + 2 if k is odd

}

=

{
(k + 1)− 1 if k + 1 is odd
(k + 1) + 1 if k + 1 is even

}
.

• Step 3: a := a + 1 = k + 1.

This means that I(k + 1) is true, as required.

Finally the loop stops when a = m, and we need to check that at that point the post-
condition is satisfied. When a = m it means that the loop invariant I(m) must hold,
so, since m is even, from I(m) we know that c = m + 1 as required.
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MATH 271 ASSIGNMENT 3 SOLUTIONS

1. Let n be a positive integer. If A1, A2, . . . , An are sets, we write

Sn = A1 − (A2 − (A3 − (· · · − (An−1 −An)) · · ·)).

For example, if n = 4 then S4 = A1 − (A2 − (A3 −A4)).

(a) Let A be a set, and let Ai = A for all 1 ≤ i ≤ n, so that

Sn = A− (A− (A− (· · · − (A−A)) · · ·)),

where there are n A’s. Prove (using induction or well ordering) that

Sn =

{
A if n is odd
∅ if n is even.

(b) Prove that for all sets A and B, A− (B −A) = A. You may use the identities on page 272.

(c) Let A and B be sets, and let Ai =

{
A if i is odd
B if i is even

. Find a simple formula (something like

in part (a)) for Sn, and prove it using induction or well ordering.

(a) Basis Step. If n = 1, then S1 = A, which agrees with what we want since 1 is odd.

Inductive Step. Assume that the formula for Sk is correct for some positive integer k.
Then

Sk+1 = A− (A− (A− (· · · − (A− A)) · · ·)) (with k + 1 A’s)

= A− Sk

=

{
A− A if k is odd
A− ∅ if k is even

by assumption

=

{
∅ if k + 1 is even
A if k + 1 is odd

so the formula for Sk+1 is correct.

Therefore, by induction, the formula for Sn is correct for all positive integers n.

(b) Using the identities on page 272,

A− (B − A) = A− (B ∩ Ac) = A ∩ (B ∩ Ac)c (#12)

= A ∩ (Bc ∪ (Ac)c) (#9)

= A ∩ (Bc ∪ A) (#6)

= (A ∩Bc) ∪ (A ∩ A) (#3)

= (A ∩Bc) ∪ A (#7)

= A. (#1, #10)
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You could also prove this using the element method:

To prove A− (B − A) ⊆ A: Let x ∈ A− (B − A) be arbitrary. This implies x ∈ A, so
A− (B − A) ⊆ A.

To prove A ⊆ A − (B − A): Let x ∈ A be arbitrary. Then notice that x 6∈ B − A,
because if x ∈ B − A it implies x 6∈ A which is a contradiction. Since x 6∈ B − A, we
get x ∈ A− (B − A). Thus A ⊆ A− (B − A).

Therefore A− (B − A) = A.

(c) We get S1 = A, S2 = A − B, and S3 = A − (B − A) which is equal to A by part (b).
So we guess that

Sn =

{
A if n is odd
A−B if n is even,

and we now prove this by induction.

Basis Step. If n = 1, then S1 = A, which agrees with our guess since 1 is odd.

Inductive Step. Assume that our guessed formula for Sk is correct for some positive
integer k. Then

Sk+1 =

{
A− (B − (A− (· · · − (B − A)) · · ·)) if k + 1 is odd
A− (B − (A− (· · · − (A−B)) · · ·)) if k + 1 is even.

Note that the expression B− (A− (· · ·− (B−A)) · · ·) (or B− (A− (· · ·− (A−B)) · · ·))
inside the outer parentheses is just Sk with A and B switched. Thus by assumption
this expression must be {

B if k is odd
B − A if k is even.

Therefore

Sk+1 =

{
A− (B − A) = A if k + 1 is odd (again using part (b))
A−B if k + 1 is even,

so the formula for Sk+1 is correct.

Therefore, by induction, the formula for Sn is correct for all positive integers n.

2. There are 5 men and 5 women, of 10 different heights.

(a) Find the number of ways of arranging the 10 people in a row so that the ith shortest woman
is next to the ith shortest man, for all 1 ≤ i ≤ 5.

(b) Find the number of ways of arranging the 10 people in a row so that the women occupy five
consecutive spots.

(c) Find the number of ways of arranging the 10 people in a row so that everyone except the
tallest person is next to someone taller.
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(a) Since the ith shortest man and the ith shortest woman must be next to each other for
each i, we can think of each couple as being “tied together” and first arrange the five
couples. This can be done in 5! ways. For each such arrangement, we can put each
couple in two orders (MW or WM), which doubles the number of arrangements for each
couple. Thus the total number of arrangements is 5! · 25 = 120 · 32 = 3840.

(b) The five consecutive spots the women occupy could be in 6 different locations: spots 1
to 5, 2 to 6, 3 to 7, 4 to 8, 5 to 9, or 6 to 10. For each of these choices, there are 5! ways
to arrange the women in these spots, and for each such way of arranging the women
there are also 5! ways of arranging the men in the five remaining spots. Thus there are
6 · 5! · 5! = 6(120)2 = 86400 such arrangements.

(c) Suppose the people are A1 to A10 from tallest to shortest. To make such an arrangement,
start with A1. Then A2 must stand next to A1, so there are two choices for where A2

goes, either to the left or the right of A1. Then A3 must stand next to either A1 or A2,
but not in between them, so A3 must go at one end of the “line” formed by A1 and
A2, so there are two choices for where A3 goes. Then A4 must go at one end of the
line formed by A1, A2 and A3, so there are two choices for A4. And so on, considering
each person in order from tallest to shortest, each person must go at one end of the line
formed by all the taller people. Thus each of the 9 people other than the tallest person
has two choices for where to be in line, so there are 29 = 512 arrangements altogether.

Another way to do this problem is by induction. First we would need to get a guess for
the correct answer for the general problem where there are n people of different heights.
In fact we may as well rephrase the problem to be: find the number of arrangements
of the numbers 1, 2, . . . , n so that each number except n is next to a larger number.
We’ll call these “good” arrangements. For small numbers n you can count the good
arrangements: for n = 2 there are two (12 and 21), for n = 3 there are four (123,
132, 231, 321), and so on. Soon we get the guess that there should be 2n−1 good
arrangements of the numbers 1, 2, . . . , n, and we now can prove this by induction. We
already know the formula is correct for n = 2. So suppose that the formula is correct for
some integer n = k, where k ≥ 2. So there are 2k−1 good arrangements of the numbers
1, 2, . . . , k. Notice that for each such arrangement, we can stick the number k + 1 in
on either side of the number k (wherever it is), and we will get a good arrangement of
1, 2, . . . , k + 1, because now k is next to a larger number, and any number that used to
be next to k either still is or else is now next to the even larger number k+1. This gives
us 2 · 2k−1 = 2k good arrangements of 1, 2, . . . , k + 1. Moreover each good arrangement
of 1, 2, . . . , k + 1 will get counted this way, because if you take a good arrangement
of 1, 2, . . . , k + 1 and pull out the k + 1 (and close up the gap) you will get a good
arrangement of 1, 2, . . . , k, because we know k had to be next to k + 1, so any other
number ` that used to be next to k+1 will now be next to k, and ` < k, so everything is
still okay. Thus there are exactly 2k good arrangements of 1, 2, . . . , k + 1, which agrees
with the formula when n = k + 1. This finishes the Inductive Step, and so we know
that there are exactly 2n−1 good arrangements of 1, 2, . . . , n for each integer n ≥ 1. In
particular, there are 29 good arrangements when n = 10, which answers the question.
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3. Find the number of ordered pairs (A,B) of subsets of {1, 2, . . . , 10} satisfying:

(a) N(A ∩B) = 7. (N(X) is the number of elements in the set X; see page 299.)

(b) N(A×B) = 7.

(c) N
(
P(A ∪B)

)
= 7. (P(X) is the power set of the set X.)

(d) N
(
P(A) ∪ P(B)

)
= 7.

(a) We want A ∩ B to have exactly 7 elements from the set {1, 2, . . . , 10}. There are
(

10
7

)
ways to choose these 7 elements. For each such choice, the other three elements in
{1, 2, . . . , 10} could be in either A or B (or neither), but cannot be in both (or the
size of the intersection would be too large). So each of the 3 other elements has three
choices: in A, in B, or in neither. This means there are 33 = 27 ways to distribute
the 3 elements not in A ∩ B, for each of the

(
10
7

)
choices for A ∩ B, so there are

27
(

10
7

)
= 27

(
10
3

)
= 27·10·9·8

3·2 = 3240 such choices of ordered pairs (A, B) altogether.

(b) Since 7 = N(A× B) = N(A)×N(B) and 7 is prime, we would need either N(A) = 7
and N(B) = 1, or N(A) = 1 and N(B) = 7. The number of 7-element subsets of

{1, 2, . . . , 10} is
(

10
7

)
=

(
10
3

)
= 120, and the number of 1-element subsets is

(
10
1

)
which of

course is 10. So the number of ways to choose A and B with N(A) = 7 and N(B) = 1
is 120 × 10 = 1200, and the number of ways to choose A and B with N(A) = 1 and
N(B) = 7 is also 1200. So there are 2400 such ordered pairs (A, B) altogether.

(c) For any set X with n elements, its power set P(X) has 2n elements. Since 7 is not a
power of 2, P(A ∪ B) cannot be equal to 7, so there are 0 (zero) such ordered pairs
(A, B) in this case.

(d) We want P(A) ∪ P(B) to have exactly 7 elements, where the number of elements in
each of P(A) and P(B) separately must be a power of 2. If either A or B had three
or more elements, then their power set would already have at least 8 elements, which
is too big. On the other hand, if say A had only one element, then its power set would
have only two elements, while P(B) would have at most 4 elements, which totals to
at most 6 elements, not enough. So each of A and B must have exactly two elements.
Then they both have 22 = 4 subsets, but notice that the empty set is a subset of each,
which means that P(A) ∪ P(B) would have at most 4 + 4 − 1 = 7 elements. If A and
B had any elements in common, the number of subsets in P(A) ∪P(B) would be even
smaller, so it means that what we want to count is the number of ordered pairs (A, B)

of disjoint 2-element subsets of {1, 2, . . . , 10}. The number of choices for A is
(

10
2

)
= 45,

and for each choice of A the number of choices for B is
(

8
2

)
= 28. So the total number

of ordered pairs (A, B) is 45 · 28 = 1260.

You could also do this count by first counting the number of ways to choose the four
elements in A ∪ B (which is

(
10
4

)
= 210), and multiplying by the number of ways to

choose two of these four elements to be A (which is
(

4
2

)
= 6), getting 210 · 6 = 1260

ways to choose A and B.
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MATH 271 ASSIGNMENT 4 SOLUTIONS

1. If F : X → X is a function, define f2(x) to be (f◦f)(x), and inductively define fk(x) = (f◦fk−1)(x)
for each integer k ≥ 3. (So f3(x) = (f ◦ f2)(x) = f(f(f(x))) for instance.) We also define f1(x) to
be f(x).

Let f : Z → Z be defined by: for all n ∈ Z, f(n) =

{
2− 2n if n is odd,
1− 2n if n is even.

(a) Find f2(n), f3(n), and f4(n).

(b) Use part (a) (and more data if you need it) to guess a fairly simple formula for fk(n) for any
positive integer k. (You may need to consider k odd and k even separately.)

(c) Use induction on k (or well ordering) to prove your guess.

(a) We get

f 2(n) = f(f(n)) =

{
f(2− 2n) if n is odd,
f(1− 2n) if n is even.

=

{
1− 2(2− 2n) if n is odd (since 2− 2n is even),
2− 2(1− 2n) if n is even (since 1− 2n is odd).

=

{
4n− 3 if n is odd,
4n if n is even;

f 3(n) = f(f 2(n)) =

{
f(4n− 3) if n is odd,
f(4n) if n is even.

=

{
2− 2(4n− 3) if n is odd (since 4n− 3 is odd),
1− 2(4n) if n is even (since 4n is even).

=

{
8− 8n if n is odd,
1− 8n if n is even;

f 4(n) = f(f 3(n)) =

{
f(8− 8n) if n is odd,
f(1− 8n) if n is even.

=

{
1− 2(8− 8n) if n is odd (since 8− 8n is even),
2− 2(1− 8n) if n is even (since 1− 8n is odd).

=

{
16n− 15 if n is odd,
16n if n is even.

(b) From part (a) we might guess that if k is odd, then fk(n) =

{
2k − 2kn if n is odd,
1− 2kn if n is even,

and if k is even, then fk(n) =

{
2kn− 2k + 1 if n is odd,
2kn if n is even.

13



(c) Basis step. Our guessed formulas for fk(n) are true for k = 1, 2, 3 and 4, by part (a).

Inductive step. Assume that our guessed formula is true for some integer k = ` ≥ 1.
We want to prove that our formula is true when k = ` + 1. We do this in two cases:

Case (i): ` is even. So we assume that f `(n) =

{
2`n− 2` + 1 if n is odd,
2`n if n is even,

and we

want to prove that f `+1(n) =

{
2`+1 − 2`+1n if n is odd,
1− 2`+1n if n is even.

We get

f `+1(n) = f(f `(n)) =

{
f(2`n− 2` + 1) if n is odd,
f(2`n) if n is even.

=

{
2− 2(2`n− 2` + 1) if n is odd (since 2`n− 2` + 1 is odd),
1− 2(2`n) if n is even (since 2`n is even).

=

{
2`+1 − 2`+1n if n is odd,
1− 2`+1n if n is even,

so the inductive step works in this case.

Case (ii): ` is odd. This time we assume that f `(n) =

{
2` − 2`n if n is odd,
1− 2`n if n is even,

and

we want to prove that f `+1(n) =

{
2`+1n− 2`+1 + 1 if n is odd,
2`+1n if n is even.

We get

f `+1(n) = f(f `(n)) =

{
f(2` − 2`n) if n is odd,
f(1− 2`n) if n is even.

=

{
1− 2(2` − 2`n) if n is odd (since 2` − 2`n is even),
2− 2(1− 2`n) if n is even (since 1− 2`n is odd).

=

{
2`+1n− 2`+1 + 1 if n is odd,
2`+1n if n is even,

so the inductive step works in this case too. Therefore the guessed formula is true for
all integers k ≥ 1.

2. For each integer n ≥ 3, let Gn be the graph with vertex set V (Gn) = {1, 2, 3, . . . , n} and where, for
all distinct a, b ∈ V (Gn), ab is an edge if and only if gcd(a, b) = 1.

(a) Draw G3 and G4.

(b) Find all integers n ≥ 3 so that Gn has a Hamiltonian circuit.

(c) Show that Gn does not have an Euler circuit if n mod 4 6= 3 (n 6≡ 3 mod 4). [Hint: do even n
and odd n separately.]

(d) Suppose for each integer n ≥ 3 we define the graph G′
n the same way as for Gn except that

V (G′
n) = {2, 3, . . . , n}. Show (without a computer) that G′

8 does not have a Hamiltonian
circuit. [Hint: start by thinking how 6 could fit into a Hamiltonian circuit.]
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(b) For any integer n ≥ 3, Gn has the Hamiltonian circuit (1, 2, 3, . . . , n, 1), because
gcd(k, k + 1) = 1 for any integer k, and also gcd(n, 1) = 1.

(c) Notice that in the graph Gn, vertex 1 is connected to every other vertex, because
gcd(1, k) = 1 for every positive integer k. Thus vertex 1 has degree n − 1. So if n is
even, vertex 1 has odd degree, and therefore Gn does not have an Euler circuit.

Now suppose n is odd. This means that n mod 4 = 1 or 3. Suppose that n mod 4 = 1.
This means that n = 4q + 1 for some integer q. Look at vertex 2. It is connected
to exactly the odd vertices of Gn, because gcd(2, k) = 1 exactly if k is odd. The odd
vertices in Gn are 1, 3, 5, . . . , n = 4q + 1, and there are 2q + 1 of these. Thus vertex 2
has degree 2q + 1, which is an odd number. Therefore Gn has no Euler circuit in the
case n mod 4 = 1 either.

Note: Does Gn have an Euler circuit when n mod 4 = 3? Of course it does when n = 3,
but it doesn’t when n = 7. If you figure out whether Gn has an Euler circuit in any
other cases (n = 11, 15, 19, . . .?) let your professor or TA know.

(d) G′
8 =
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�
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Suppose that G′
8 had a Hamiltonian circuit. Every vertex of G′

8 must be included in the
circuit. Since the degree of vertex 6 is only 2, both of its edges must be in the circuit.
So the circuit must contain vertices 5,6,7 in this order. What comes after 7? There are
two cases.

Case (i): Suppose 8 comes after 7 in the circuit. Then the circuit contains 5,6,7,8 in this
order. The next vertex must then be 3, because 3 is the only vertex adjacent to 8 that is
not in the circuit yet. So we have 5,6,7,8,3 in this order, and so the remaining vertices 2
and 4 must go after this and so must be next to each other, which is impossible because
they are not adjacent. So no Hamiltonian circuit is possible in this case.

Case (ii): So suppose 8 does not come after 7 in the circuit. This means that 8 must
come somewhere else in the circuit, but since we cannot use the edge 78 in the circuit
we must use edges 85 and 83, because these are the only other edges containing vertex
8. So the circuit must contain 38567 in this order. But now once again vertices 2 and
4 have to come next, and so must be next to each other, which is impossible. So no
Hamiltonian circuit is possible in this case either.

Therefore G′
8 does not have a Hamiltonian circuit.

Note: You can easily show (as in part (b)) that G′
n will have a Hamiltonian circuit

whenever n is odd. Does G′
n have a Hamiltonian circuit for any even n? If you get any

answers, tell your professor or TA.
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3. (a) Find the total number of all walks (starting at any vertex, ending at any vertex) of length
271 in the complete graph Kn.

(b) Find the total number of walks of length 271 in the complete bipartite graph Km,n.

(c) Find the total number of simple paths of length n− 1 in Kn.

(d) Find the total number of simple paths of length m + n − 1 in Km,n. [You may assume that
m ≥ n. You will need to consider a few cases.]

(a) In Kn we can start at any of the n vertices, then we have n− 1 choices for the first step
of the walk (to any of the n−1 vertices other than the one we are on), then n−1 choices
for the next step, and so on until we have taken 271 steps. So by the multiplication
rule there are n(n− 1)271 such walks.

(b) Let the vertices of Km,n be grouped into the two sets M and N , where M has m vertices
and N has n vertices. Then all steps must go between M and N . There are two cases.

Case (i). If the walk starts at a vertex of M , we have m choices for the starting vertex,
then n choices for the first step of the walk (any of the vertices of N), then m choices
for the next step of the walk (any of the vertices of M), and so on, alternating between
n and m choices until we have taken 271 steps, with the 271st step having n choices.
This means that (including the original choice of starting vertex) we will have n choices
136 times and m choices 136 times, so the total number of walks that start at a vertex
of M is n136m136 = (nm)136.

Case (ii). If the walk starts at a vertex of N , exactly the same argument will again
produce exactly (nm)136 walks.

So the total number of walks is 2(nm)136.

(c) A simple path of length n− 1 in Kn will have to use each vertex exactly once, and we
can use the n vertices in any order we like because all vertices are connected. Thus the
total number of such paths is just the number of permutations of the numbers 1 to n,
which is n!.

(d) Since Km,n has m+n vertices, any simple path of length m+n−1 will use every vertex
exactly once. Again let the vertices of Km,n be grouped into the two sets M and N ,
where M has m vertices and N has n vertices. Then all steps must go between M and
N . Thus the only way to use up every vertex of Km,n with a simple path is if the sizes
of M and N are at most one apart. In other words, if m − n > 1 then there are no
such simple paths. We have two cases left.

Case (i). Suppose m = n+1. Then all such simple paths must start and end at a vertex
of the bigger set M . There are m choices for the starting vertex, then n choices for the
first step, then m− 1 choices for the next step (any vertex of M except for the starting
vertex), then n − 1 choices for the next step (any vertex of N except for the second
vertex), and so on until we run out of vertices. Thus there are m·n·(m−1)·(n−1) · · · =
m!n! = n!(n + 1)! such simple paths in this case.

Case (ii). Suppose m = n. Then a simple path can start at any vertex. Suppose
it starts at a vertex of M (m choices). Then the next step can be any of n choices
in N , the next step any of the m − 1 remaining vertices in M , the next step any of
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the remaining n − 1 vertices in N , and so on until we run out of vertices. This gives
m · n · (m− 1) · (n− 1) · · · = m!n! = (n!)2 such paths starting at a vertex of M . But we

have the same number of paths starting at a vertex of N . So there are 2(n!)2 simple
paths altogether in this case.
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