MATH 271 ASSIGNMENT 1 SOLUTIONS

- 1. For each true statement below, give a proof. For each false statement below, write out its negation, then give a proof of the negation.
 - (a) $\forall x \in \mathbb{Q}, x \text{ can be written as } a/b \text{ where } a, b \in \mathbb{Z} \text{ and } b|a.$
 - (b) $\exists x \in \mathbb{Q}$ so that x can be written as a/b where $a, b \in \mathbb{Z}$ and b|a.
 - (c) $\forall x \in \mathbb{Q}$, x can be written as a/b where $a, b \in \mathbb{Z}$ and $b|a^2$.
 - (d) $\forall x \in \mathbb{R}$, if x is irrational then x^2 is irrational or x^3 is irrational.
 - (e) $\forall x \in \mathbb{R}$, if x^2 is rational then x^3 is rational or x^5 is rational.
 - (a) This statement is **false**. The negation of the statement is

 $\exists x \in \mathbb{Q}$ so that $x \neq a/b$ for any $a, b \in \mathbb{Z}$ such that b|a.

An example which proves the negation is x = 1/2, because if x = a/b and b|a, it would mean that x is an integer, and 1/2 is not an integer.

- (b) This statement is **true**. An example proving this statement is x = 1, which can be written as 1/1 where 1|1.
- (c) This statement is **true**. Here is a proof. Let $x \in \mathbb{Q}$. This means that x = c/d for some $c, d \in \mathbb{Z}$ with $d \neq 0$. Then $x = \frac{cd}{d^2}$ where $d^2 \neq 0$, and $(cd)^2 = c^2d^2$ where $c^2 \in \mathbb{Z}$, so $d^2|(cd)^2$. Thus we can put a = cd and $b = d^2$ and we get x = a/b where $a, b \in \mathbb{Z}$ and $b|a^2$. Done.
- (d) This statement is **true**. We prove it by proving the *contrapositive* instead. The contrapositive is

 $\forall x \in \mathbb{R}$, if x^2 is rational and x^3 is rational, then x is rational.

Assume that $x \in \mathbb{R}$ is such that x^2 is rational and x^3 is rational. We want to prove that x is rational. There are two cases.

Case 1. Suppose x = 0. Then of course x is rational, so we are done.

Case 2. Now suppose that $x \neq 0$. Since x^2 is rational, $x^2 = a/b$ for some $a, b \in \mathbb{Z}$ with $b \neq 0$ and also $a \neq 0$ (since $x \neq 0$). Since x^3 is rational, $x^3 = c/d$ for some $c, d \in \mathbb{Z}$ with $d \neq 0$. Thus $x = x^3/x^2 = (c/d)/(a/b) = bc/ad$, where bc and ad are integers with $ad \neq 0$ (since a and d are each nonzero), so x is rational.

(e) This statement is **false**. The negation is

 $\exists x \in \mathbb{R}$ so that x^2 is rational but x^3 is irrational and x^5 is irrational.

This statement is proved by the example $x = \sqrt{2}$. Then $x^2 = 2$ is rational, but $x^3 = 2\sqrt{2}$ and $x^5 = 4\sqrt{2}$ are both irrational. Both of these statements follow from Exercise 10 on page 178 of the text, or could be proved by contradiction. For example, to prove that $2\sqrt{2}$ is irrational, we assume that it is rational. This means that $2\sqrt{2} = a/b$ for some $a, b \in \mathbb{Z}$ with $b \neq 0$. But then $\sqrt{2} = a/(2b)$ where $2b \in \mathbb{Z}$ and $2b \neq 0$, so $\sqrt{2}$ is rational, which is impossible. Therefore $2\sqrt{2}$ must be irrational. Similarly $4\sqrt{2}$ is irrational.

- 2. (a) Disprove the following statement: $\forall x, y \in \mathbb{R}$, if $\lfloor xy \rfloor = 0$ then $\lfloor x \rfloor = 0$ or $\lfloor y \rfloor = 0$.
 - (b) Write out the contrapositive of the statement in part (a). Is it true or false? Explain.
 - (c) Write out the converse of the statement in part (a). Is it true or false? Explain.
 - (d) Prove or disprove the following statement: $\forall x, y \in \mathbb{R}$, if $\lceil xy \rceil = 0$ then $\lceil x \rceil = 0$ or $\lceil y \rceil = 0$.
 - (e) Prove or disprove the following statement: $\exists x, y \in \mathbb{R}$ such that $\lfloor xy \rfloor = 0$ and $\lfloor x \rfloor \lfloor y \rfloor = 271$.
 - (f) Prove or disprove the following statement: $\exists x, y \in \mathbb{R}$ such that $\lceil xy \rceil = 0$ and $\lceil x \rceil \lceil y \rceil = 271$.
 - (a) To disprove this statement, we need to find real numbers x and y so that $\lfloor xy \rfloor = 0$ but $\lfloor x \rfloor \neq 0$ and $\lfloor y \rfloor \neq 0$. An example is x = -1/2 and y = -1. Then xy = 1/2, so $\lfloor xy \rfloor = \lfloor 1/2 \rfloor = 0$ while $\lfloor x \rfloor = \lfloor -1/2 \rfloor = -1 \neq 0$ and $\lfloor y \rfloor = \lfloor -1 \rfloor = -1 \neq 0$. *Note*: if x and y are both positive numbers so that $\lfloor xy \rfloor = 0$, then 0 < xy < 1, so either

Note: If x and y are both positive numbers so that $\lfloor xy \rfloor = 0$, then 0 < xy < 1, so either 0 < x < 1 or 0 < y < 1, so one of $\lfloor x \rfloor = 0$ or $\lfloor y \rfloor = 0$ will have to be true. So for a counterexample we have to look at negative x and y.

(b) The contrapositive is

$$\forall x, y \in \mathbb{R}$$
, if $|x| \neq 0$ and $|y| \neq 0$ then $|xy| \neq 0$.

The contrapositive is **false** because it is equivalent to the original statement which is false.

(c) The converse is

$$\forall x, y \in \mathbb{R}, \text{ if } \lfloor x \rfloor = 0 \text{ or } \lfloor y \rfloor = 0 \text{ then } \lfloor xy \rfloor = 0.$$

The converse is **false**. A counterexample is x = 1/2 and y = 2. Then $\lfloor x \rfloor = \lfloor 1/2 \rfloor = 0$, so the "if" part is true, but xy = 1, so $\lfloor xy \rfloor = \lfloor 1 \rfloor = 1 \neq 0$, so the "then" part is false.

- (d) This statement is **false**. A counterexample is x = 1/2 and y = -1. Then xy = -1/2, so $\lceil xy \rceil = \lceil -1/2 \rceil = 0$, but $\lceil x \rceil = \lceil 1/2 \rceil = 1 \neq 0$ and $\lceil y \rceil = \lceil -1 \rceil = -1 \neq 0$.
- (e) This statement is **true**. An example is x = -271 and y = -1/272. Then xy = 271/272, so $\lfloor xy \rfloor = \lfloor 271/272 \rfloor = 0$, and $\lfloor x \rfloor \lfloor y \rfloor = \lfloor -271 \rfloor \lfloor -1/272 \rfloor = (-271)(-1) = 271$.
- (f) This statement is **false**. We prove this by contradiction. Suppose that the statement were true. Let x and y be real numbers so that $\lceil xy \rceil = 0$ and $\lceil x \rceil \lceil y \rceil = 271$. Since $\lceil xy \rceil = 0$, we must have $-1 < xy \le 0$, so xy is negative (or zero). This means that (without loss of generality) $x \le 0$ and $y \ge 0$. But then $\lceil x \rceil \le 0$ and $\lceil y \rceil \ge 0$, and thus $\lceil x \rceil \lceil y \rceil \le 0$, which contradicts $\lceil x \rceil \lceil y \rceil = 271$.
- 3. Let N be your student ID number.
 - (a) Use the Euclidean Algorithm to find gcd(N, 271).
 - (b) Use your answer to part (a) to write gcd(N, 271) in the form Na + 271b where $a, b \in \mathbb{Z}$.
 - (c) Suppose that M is a positive integer such that gcd(M, 271) = gcd(M, 2008). Find gcd(M, 271). Explain. [*Hint*: 271 is prime.]

- (d) Suppose that M is an integer between 250000 and 450000 such that gcd(M, 271) = gcd(M, 2008) + 20. Find M. Explain. [You may use Exercise 33, page 631.]
- (a) Let's do it for the hypothetical student number N = 123456. The Euclidean algorithm gives:

$$123456 = 455 \cdot 271 + 151 \qquad (\text{so } 151 = 123456 - 455 \cdot 271)$$

$$271 = 1 \cdot 151 + 120 \qquad (\text{so } 120 = 271 - 151)$$

$$151 = 1 \cdot 120 + 31 \qquad (\text{so } 31 = 151 - 120)$$

$$120 = 3 \cdot 31 + 27 \qquad (\text{so } 27 = 120 - 3 \cdot 31)$$

$$31 = 1 \cdot 27 + 4 \qquad (\text{so } 4 = 31 - 27)$$

$$27 = 6 \cdot 4 + 3 \qquad (\text{so } 3 = 27 - 6 \cdot 4)$$

$$4 = 1 \cdot 3 + 1 \qquad (\text{so } 1 = 4 - 3)$$

$$3 = 3 \cdot 1,$$

so gcd(123456, 271) = 1, the last nonzero remainder.

(b) Now, starting with the second-last equation above, solving it for the gcd 1, and plugging in the remainders one by one from the earlier equations, we get:

$$1 = 4 - 3$$

= 4 - (27 - 6 \cdot 4) = 7 \cdot 4 - 27
= 7 \cdot (31 - 27) - 27 = 7 \cdot 31 - 8 \cdot 27
= 7 \cdot 31 - 8 \cdot (120 - 3 \cdot 31) = 7 \cdot 31 - 8 \cdot 120 + 24 \cdot 31 = 31 \cdot 31 - 8 \cdot 120
= 31 \cdot (151 - 120) - 8 \cdot 120 = 31 \cdot 151 - 39 \cdot 120
= 31 \cdot 151 - 39 \cdot (271 - 151) = 70 \cdot 151 - 39 \cdot 271
= 70 \cdot (123456 - 455 \cdot 271) - 39 \cdot 271 = 70 \cdot 123456 - 31850 \cdot 271 - 39 \cdot 271
= 70 \cdot 123456 - 31889 \cdot 271.

So a = 70 and b = -31889 in this case.

- (c) Since gcd(M, 271) is a divisor of 271 and 271 is prime, gcd(M, 271) must be either 1 or 271. Since 271 does not divide into 2008, gcd(M, 2008) cannot be 271. Thus, since gcd(M, 271) = gcd(M, 2008), gcd(M, 271) = 1.
- (d) Since gcd(M, 271) = 1 or 271 and gcd(M, 271) = gcd(M, 2008) + 20 > 20, gcd(M, 271) must equal 271 and thus gcd(M, 2008) must equal 251. Thus M must be a multiple of both 271 and 251, and so, since gcd(271, 251) = 1 since 271 is prime, by Exercise 33, page 631, $271 \cdot 251 = 68021$ must divide into M. Thus M = 68021k for some positive integer k. Moreover, since gcd(M, 2008) = 251 is odd and 2008 is even, M cannot be even. So k must be odd. Now $68021 \cdot 3 = 204063$ is too small to be M and $68021 \cdot 7 = 476147$ is too large to be M, so M must be $68021 \cdot 5 = 340105$ which lies in the right range for M.

Note. By the way, gcd(M, 2008) = 251 is possible because 251|2008. In fact, $2008 = 251 \cdot 8$ so gcd(M, 2008) = gcd(340105, 2008) = 251 does hold.