
MATH 271 ASSIGNMENT 2 SOLUTIONS

1. (a) Prove by induction (or by well-ordering) that 3n + 4n ≤ 5n for all integers n ≥ 2.

(b) Prove by induction (or by well-ordering) that (5/4)n − (3/4)n ≥ n/2 for all integers n ≥ 1.
[Note: you might have to consider the cases n = 1, 2, 3 and n ≥ 4 separately.]

(c) Prove that, for all real numbers x ≥ 2, if (5/4)x − (3/4)x ≥ x/2 then 3x + 4x ≤ 5x. Use this
and part (b) to give another proof that 3n + 4n ≤ 5n for all integers n ≥ 2.

(a) Basis step. When n = 2 the statement to be proved is 32 + 42 ≤ 52, which is true since
9 + 16 = 25.

Inductive step. Assume that 3k + 4k ≤ 5k holds for some integer k ≥ 2. We want to
prove that 3k+1 + 4k+1 ≤ 5k+1. Well, we get

5k+1 = 5 · 5k ≥ 5(3k + 4k) from the assumption

= 5 · 3k + 5 · 4k

> 3 · 3k + 4 · 4k = 3k+1 + 4k+1

so the inductive step is proved.

Therefore 3n + 4n ≤ 5n for all integers n ≥ 2.

(b) Basis step. When n = 1 the statement to be proved is 5
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2
, which is

true.

Inductive step. Assume that (5/4)k − (3/4)k ≥ k/2 for some integer k ≥ 1. We want
to prove that (5/4)k+1 − (3/4)k+1 ≥ (k + 1)/2. From our assumption we get that
(5/4)k ≥ (3/4)k + k/2, so by multiplying both sides by 5/4 we get
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Now, if we knew that
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then we would know that
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, which is what we want to prove. So

we need only prove (1) for all integers k ≥ 1. Note that 1
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> 0, so 1
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which means that to prove (1) we need only prove that 5k
8
≥ k+1

2
. This is equivalent to

10k ≥ 8k + 8, or 2k ≥ 8, or k ≥ 4. So we have proved (1) for all integers k ≥ 4, which
means we still have to prove (1) when k = 1, 2 and 3. We do this individually:

• When k = 1, (1) says 1
2
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)
+ 5

8
≥ 1, which is true since 3
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• When k = 2, (1) says 1
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• When k = 3, (1) says 1
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≥ 2, which is true since 27
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> 2.
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This finishes the inductive step.

Since both the basis step and inductive step are now proved, we have proved that
(5/4)n − (3/4)n ≥ n/2 for all integers n ≥ 1.

Note. Alternatively, we could have put n = 1, 2, 3 and 4 all into the basis step, then in
the inductive step we would only need to consider the case k ≥ 4. Or we could have
handled the cases n = 1, 2 and 3 separately at the beginning, then use induction to
prove the inequality for all integers n ≥ 4 only, with only the case n = 4 in the basis
step.

(c) Let x be an arbitrary real number with x ≥ 2, and assume that (5/4)x − (3/4)x ≥ x/2.
We want to prove that 3x + 4x ≤ 5x. Well, from (5/4)x − (3/4)x ≥ x/2 we multiply
both sides by 4x to get 5x − 3x ≥ (x

2
)4x, then rearrange to get 5x ≥ 3x + (x

2
)4x. Since

x ≥ 2, x/2 ≥ 1, so 5x ≥ 3x + (x
2
)4x ≥ 3x + 4x, so 3x + 4x ≤ 5x as required. Done.

Now if n ≥ 2 is an integer, then n ≥ 1, so from part (b) we know that (5/4)n− (3/4)n ≥
n/2. Therefore, since n ≥ 2, we know from the first part of (c) that 3n + 4n ≤ 5n.

2. The sequence b1, b2, . . . is defined by: b1 = 1, and bn =
⌈

n

bn−1

⌉
for all integers n ≥ 2.

(a) Find b2, b3, b4, b5 and b6.

(b) Use part (a) (and more data if you need it) to guess a simple formula for bn in terms of n.
[Hint: do the cases of odd n and even n separately.]

(c) Use induction (or well-ordering) to prove your guess.

(d) Suppose the sequence c1, c2, . . . is defined by: c1 = 1, c2 = 1, and cn =
⌈

n

cn−2

⌉
for all integers

n ≥ 3. Calculate enough terms of the sequence to enable you to see a pattern. Use that
pattern to guess what c271 and c281 are. (No proof needed — yet.)

(a) We get

• b1 = 1, b2 = d2/b1e = d2/1e = 2,

• b3 = d3/b2e = d3/2e = 2, b4 = d4/b3e = d4/2e = 2,

• b5 = d5/b4e = d5/2e = 3, b6 = d6/b5e = d6/3e = 2.

(b) We could guess (maybe by further calculating that b7 = d7/b6e = d7/2e = 4 and
b8 = d8/b7e = d8/4e = 2 for instance) that, for all integers n ≥ 1,

bn =

{
(n + 1)/2 if n is odd,
2 if n is even.

(c) Basis step. The formula for bn is correct when n = 1 (which is odd), because (1+1)/2 =
1 = b1. This will turn out to be all we need for the basis step.

Inductive step. Assume that the formula for bn is true when n = k, where k ≥ 1 is some
integer. There are two cases:

• If k is even, then we are assuming that bk = 2, so

bk+1 =

⌈
k + 1

bk

⌉
=

⌈
k + 1

2

⌉
=

k + 2

2

since k + 1 is odd, which agrees with the formula for bk+1 when n = k + 1.
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• If k is odd, then we are assuming that bk = (k + 1)/2, so

bk+1 =

⌈
k + 1

bk

⌉
=

⌈
k + 1

(k + 1)/2

⌉
= d2e = 2,

which agrees with the formula for bk+1 when n = k + 1 since k + 1 is even.

So the formula is correct when n = k + 1 in either case. This proves the inductive step.

Therefore by induction the formula for bn is correct for all integers n ≥ 1.

(d) This time we get

• c3 = d3/1e = 3, c4 = d4/1e = 4, c5 = d5/3e = 2, c6 = d6/4e = 2,

• c7 = d7/2e = 4, c8 = d8/2e = 4, c9 = d9/4e = 3, c10 = d10/4e = 3,

• c11 = d11/3e = 4, c12 = d12/3e = 4, c13 = d13/4e = 4, c14 = d14/4e = 4,

• c15 = d15/4e = 4, c16 = d16/4e = 4, c17 = d17/4e = 5, c18 = d18/4e = 5,

• c19 = d19/5e = 4, c20 = d20/5e = 4, c21 = d21/4e = 6, c22 = d22/4e = 6.

From this we guess that cn = 4 whenever n > 3 is of the form 4k or 4k + 3 for some
integer k, and cn = k + 1 whenever n is of the form 4k + 1 or 4k + 2 for some integer
k. For example, 21 = 4 · 5 + 1, so c21 = 5 + 1 = 6. From this pattern we would guess
that since 271 = 4 · 67 + 3, c271 should be 4, while since 281 = 4 · 70 + 1, c281 should be
70 + 1 = 71.

3. You are given the following “while” loop:

[Pre-condition: m is a nonnegative integer, a = 0, b = 0, i = 0.]

while (i 6= m)
1. b := a + b + 1
2. a := a− 4b
3. i := i + 1

end while

[Post-condition: b = m(−1)m+1.]

Loop invariant: I(n) is

i = n, a =

{
−2(n + 1) if n is odd
2n if n is even

}
, b = n(−1)n+1.

(a) Prove the correctness of this loop with respect to the pre- and post-conditions.

(b) Suppose the “while” loop is as above, except that statement 2 is replaced by: a := a − b.
Run through the loop often enough, recording the various values of a and b that result, until
you can predict what the post-condition value of b will be when m = 271. What is your
prediction? Explain.

(a) We first need to check that the loop invariant holds when n = 0. Since 0 is even,
I(0) says i = 0, a = 2 · 0 = 0, and b = 0(−1)1 = 0, and these are all true by the
pre-conditions.
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So now assume that the loop invariant I(k) holds for some integer k ≥ 0 where k < m.
We want to prove that I(k+1) holds, that is, that the loop invariant will still hold after
one more pass through the loop. So we are assuming that{

i = k, a = −2(k + 1), b = k(−1)k+1 = k if k is odd,
i = k, a = 2k, b = k(−1)k+1 = −k if k is even,

}

and we now go through the loop.

• Step 1: b := a + b + 1 =

{
−2(k + 1) + k + 1 if k is odd
2k − k + 1 if k is even

}

=

{
(k + 1)(−1) if k is odd
k + 1 if k is even

}
= (k + 1)(−1)k+2,

which agrees with the formula for b in I(k + 1).

• Step 2: a := a− 4b =

{
−2(k + 1)− 4(−k − 1) if k is odd
2k − 4(k + 1) if k is even

}

=

{
2(k + 1) if k + 1 is even
−2(k + 2) if k + 1 is odd

}
,

which agrees with the formula for a in I(k + 1).

• Step 3: i := i + 1 = k + 1, which agrees with I(k + 1).

Thus I(k + 1) is true, as required.

Finally the loop stops when i = m, and we need to check that at that point the post-
condition is satisfied. When i = m it means that the loop invariant I(m) must hold, so
from I(m) we know that b = m(−1)m+1 as required.

(b) If we set the variables to their pre-condition values of a = 0, b = 0 and i = 0, and run
through the loop, the new values we get are b = 0 + 0 + 1 = 1, a = 0 − 1 = −1, i = 1.
If we continue to run through the loop, and keep track of the variables in a table, here
is what we get:

n 0 1 2 3 4 5 6
b 0 1 1 0 -1 -1 0
a 0 -1 -2 -2 -1 0 0
i 0 1 2 3 4 5 6

At this point (when n = 6) our values of b and a are back to what they were at the
beginning (when n = 0), namely b = a = 0. Since the loop calculates the new values of
a and b only in terms of their old values, and not in terms of n for example, the values
of a and b should continue to cycle through the same values in the above table. This
means that a = b = 0 whenever n is a multiple of 6, a = −1 and b = 1 whenever n
is 1 plus a multiple of 6, and so on. Since 271 = 6 · 45 + 1, when the loop ends (at
m = i = n = 271), we should have b = 1.
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