1. (a) Prove by induction (or by well-ordering) that $3^{n}+4^{n} \leq 5^{n}$ for all integers $n \geq 2$.
(b) Prove by induction (or by well-ordering) that $(5 / 4)^{n}-(3 / 4)^{n} \geq n / 2$ for all integers $n \geq 1$. [Note: you might have to consider the cases $n=1,2,3$ and $n \geq 4$ separately.]
(c) Prove that, for all real numbers $x \geq 2$, if $(5 / 4)^{x}-(3 / 4)^{x} \geq x / 2$ then $3^{x}+4^{x} \leq 5^{x}$. Use this and part (b) to give another proof that $3^{n}+4^{n} \leq 5^{n}$ for all integers $n \geq 2$.
(a) Basis step. When $n=2$ the statement to be proved is $3^{2}+4^{2} \leq 5^{2}$, which is true since $9+16=25$.

Inductive step. Assume that $3^{k}+4^{k} \leq 5^{k}$ holds for some integer $k \geq 2$. We want to prove that $3^{k+1}+4^{k+1} \leq 5^{k+1}$. Well, we get

$$
\begin{aligned}
5^{k+1}=5 \cdot 5^{k} & \geq 5\left(3^{k}+4^{k}\right) \quad \text { from the assumption } \\
& =5 \cdot 3^{k}+5 \cdot 4^{k} \\
& >3 \cdot 3^{k}+4 \cdot 4^{k}=3^{k+1}+4^{k+1}
\end{aligned}
$$

so the inductive step is proved.
Therefore $3^{n}+4^{n} \leq 5^{n}$ for all integers $n \geq 2$.
(b) Basis step. When $n=1$ the statement to be proved is $\frac{5}{4}-\frac{3}{4} \geq \frac{1}{2}$ or $\frac{1}{2} \geq \frac{1}{2}$, which is true.

Inductive step. Assume that $(5 / 4)^{k}-(3 / 4)^{k} \geq k / 2$ for some integer $k \geq 1$. We want to prove that $(5 / 4)^{k+1}-(3 / 4)^{k+1} \geq(k+1) / 2$. From our assumption we get that $(5 / 4)^{k} \geq(3 / 4)^{k}+k / 2$, so by multiplying both sides by $5 / 4$ we get

$$
\left(\frac{5}{4}\right)^{k+1}=\frac{5}{4}\left(\frac{5}{4}\right)^{k} \geq \frac{5}{4}\left(\frac{3}{4}\right)^{k}+\frac{5}{4} \cdot \frac{k}{2}=\frac{5}{4}\left(\frac{3}{4}\right)^{k}+\frac{5 k}{8}
$$

Thus

$$
\left(\frac{5}{4}\right)^{k+1}-\left(\frac{3}{4}\right)^{k+1} \geq \frac{5}{4}\left(\frac{3}{4}\right)^{k}+\frac{5 k}{8}-\left(\frac{3}{4}\right)^{k+1}=\left(\frac{5}{4}-\frac{3}{4}\right)\left(\frac{3}{4}\right)^{k}+\frac{5 k}{8}=\frac{1}{2}\left(\frac{3}{4}\right)^{k}+\frac{5 k}{8}
$$

Now, if we knew that

$$
\begin{equation*}
\frac{1}{2}\left(\frac{3}{4}\right)^{k}+\frac{5 k}{8} \geq \frac{k+1}{2} \tag{1}
\end{equation*}
$$

then we would know that $\left(\frac{5}{4}\right)^{k+1}-\left(\frac{3}{4}\right)^{k+1} \geq \frac{k+1}{2}$, which is what we want to prove. So we need only prove (1) for all integers $k \geq 1$. Note that $\frac{1}{2}\left(\frac{3}{4}\right)^{k}>0$, so $\frac{1}{2}\left(\frac{3}{4}\right)^{k}+\frac{5 k}{8}>\frac{5 k}{8}$, which means that to prove (1) we need only prove that $\frac{5 k}{8} \geq \frac{k+1}{2}$. This is equivalent to $10 k \geq 8 k+8$, or $2 k \geq 8$, or $k \geq 4$. So we have proved (1) for all integers $k \geq 4$, which means we still have to prove (1) when $k=1,2$ and 3 . We do this individually:

- When $k=1$, (1) says $\frac{1}{2}\left(\frac{3}{4}\right)+\frac{5}{8} \geq 1$, which is true since $\frac{3}{8}+\frac{5}{8}=1$.
- When $k=2,(1)$ says $\frac{1}{2}\left(\frac{9}{16}\right)+\frac{5}{4} \geq \frac{3}{2}$, which is true since $\frac{9}{32}+\frac{5}{4}=\frac{49}{32}>\frac{3}{2}$.
- When $k=3,(1)$ says $\frac{1}{2}\left(\frac{27}{64}\right)+\frac{15}{8} \geq 2$, which is true since $\frac{27}{128}+\frac{15}{8}=\frac{267}{128}>2$.

This finishes the inductive step.
Since both the basis step and inductive step are now proved, we have proved that $(5 / 4)^{n}-(3 / 4)^{n} \geq n / 2$ for all integers $n \geq 1$.
Note. Alternatively, we could have put $n=1,2,3$ and 4 all into the basis step, then in the inductive step we would only need to consider the case $k \geq 4$. Or we could have handled the cases $n=1,2$ and 3 separately at the beginning, then use induction to prove the inequality for all integers $n \geq 4$ only, with only the case $n=4$ in the basis step.
(c) Let x be an arbitrary real number with $x \geq 2$, and assume that $(5 / 4)^{x}-(3 / 4)^{x} \geq x / 2$. We want to prove that $3^{x}+4^{x} \leq 5^{x}$. Well, from (5/4) $-(3 / 4)^{x} \geq x / 2$ we multiply both sides by 4^{x} to get $5^{x}-3^{x} \geq\left(\frac{x}{2}\right) 4^{x}$, then rearrange to get $5^{x} \geq 3^{x}+\left(\frac{x}{2}\right) 4^{x}$. Since $x \geq 2, x / 2 \geq 1$, so $5^{x} \geq 3^{x}+\left(\frac{x}{2}\right) 4^{x} \geq 3^{x}+4^{x}$, so $3^{x}+4^{x} \leq 5^{x}$ as required. Done.
Now if $n \geq 2$ is an integer, then $n \geq 1$, so from part (b) we know that $(5 / 4)^{n}-(3 / 4)^{n} \geq$ $n / 2$. Therefore, since $n \geq 2$, we know from the first part of (c) that $3^{n}+4^{n} \leq 5^{n}$.
2. The sequence b_{1}, b_{2}, \ldots is defined by: $b_{1}=1$, and $b_{n}=\left\lceil\frac{n}{b_{n-1}}\right\rceil$ for all integers $n \geq 2$.
(a) Find $b_{2}, b_{3}, b_{4}, b_{5}$ and b_{6}.
(b) Use part (a) (and more data if you need it) to guess a simple formula for b_{n} in terms of n. [Hint: do the cases of odd n and even n separately.]
(c) Use induction (or well-ordering) to prove your guess.
(d) Suppose the sequence c_{1}, c_{2}, \ldots is defined by: $c_{1}=1, c_{2}=1$, and $c_{n}=\left\lceil\frac{n}{c_{n-2}}\right\rceil$ for all integers $n \geq 3$. Calculate enough terms of the sequence to enable you to see a pattern. Use that pattern to guess what c_{271} and c_{281} are. (No proof needed - yet.)
(a) We get

- $b_{1}=1$,
$b_{2}=\left\lceil 2 / b_{1}\right\rceil=\lceil 2 / 1\rceil=2$,
- $b_{3}=\left\lceil 3 / b_{2}\right\rceil=\lceil 3 / 2\rceil=2, \quad b_{4}=\left\lceil 4 / b_{3}\right\rceil=\lceil 4 / 2\rceil=2$,
- $b_{5}=\left\lceil 5 / b_{4}\right\rceil=\lceil 5 / 2\rceil=3, \quad b_{6}=\left\lceil 6 / b_{5}\right\rceil=\lceil 6 / 3\rceil=2$.
(b) We could guess (maybe by further calculating that $b_{7}=\left\lceil 7 / b_{6}\right\rceil=\lceil 7 / 2\rceil=4$ and $b_{8}=\left\lceil 8 / b_{7}\right\rceil=\lceil 8 / 4\rceil=2$ for instance) that, for all integers $n \geq 1$,

$$
b_{n}= \begin{cases}(n+1) / 2 & \text { if } n \text { is odd } \\ 2 & \text { if } n \text { is even }\end{cases}
$$

(c) Basis step. The formula for b_{n} is correct when $n=1$ (which is odd), because $(1+1) / 2=$ $1=b_{1}$. This will turn out to be all we need for the basis step.
Inductive step. Assume that the formula for b_{n} is true when $n=k$, where $k \geq 1$ is some integer. There are two cases:

- If k is even, then we are assuming that $b_{k}=2$, so

$$
b_{k+1}=\left\lceil\frac{k+1}{b_{k}}\right\rceil=\left\lceil\frac{k+1}{2}\right\rceil=\frac{k+2}{2}
$$

since $k+1$ is odd, which agrees with the formula for b_{k+1} when $n=k+1$.

- If k is odd, then we are assuming that $b_{k}=(k+1) / 2$, so

$$
b_{k+1}=\left\lceil\frac{k+1}{b_{k}}\right\rceil=\left\lceil\frac{k+1}{(k+1) / 2}\right\rceil=\lceil 2\rceil=2,
$$

which agrees with the formula for b_{k+1} when $n=k+1$ since $k+1$ is even.
So the formula is correct when $n=k+1$ in either case. This proves the inductive step.
Therefore by induction the formula for b_{n} is correct for all integers $n \geq 1$.
(d) This time we get

- $c_{3}=\lceil 3 / 1\rceil=3, \quad c_{4}=\lceil 4 / 1\rceil=4, \quad c_{5}=\lceil 5 / 3\rceil=2, \quad c_{6}=\lceil 6 / 4\rceil=2$,
- $c_{7}=\lceil 7 / 2\rceil=4, \quad c_{8}=\lceil 8 / 2\rceil=4, \quad c_{9}=\lceil 9 / 4\rceil=3, \quad c_{10}=\lceil 10 / 4\rceil=3$,
- $c_{11}=\lceil 11 / 3\rceil=4, \quad c_{12}=\lceil 12 / 3\rceil=4, \quad c_{13}=\lceil 13 / 4\rceil=4, \quad c_{14}=\lceil 14 / 4\rceil=4$,
- $c_{15}=\lceil 15 / 4\rceil=4, \quad c_{16}=\lceil 16 / 4\rceil=4, \quad c_{17}=\lceil 17 / 4\rceil=5, \quad c_{18}=\lceil 18 / 4\rceil=5$,
- $c_{19}=\lceil 19 / 5\rceil=4, \quad c_{20}=\lceil 20 / 5\rceil=4, \quad c_{21}=\lceil 21 / 4\rceil=6, \quad c_{22}=\lceil 22 / 4\rceil=6$.

From this we guess that $c_{n}=4$ whenever $n>3$ is of the form $4 k$ or $4 k+3$ for some integer k, and $c_{n}=k+1$ whenever n is of the form $4 k+1$ or $4 k+2$ for some integer k. For example, $21=4 \cdot 5+1$, so $c_{21}=5+1=6$. From this pattern we would guess that since $271=4 \cdot 67+3, c_{271}$ should be $\mathbf{4}$, while since $281=4 \cdot 70+1, c_{281}$ should be $70+1=71$.
3. You are given the following "while" loop:
[Pre-condition: m is a nonnegative integer, $a=0, b=0, i=0$.]
while $(i \neq m)$

1. $b:=a+b+1$
2. $a:=a-4 b$
3. $i:=i+1$

end while

[Post-condition: $b=m(-1)^{m+1}$.]
Loop invariant: $I(n)$ is

$$
i=n, \quad a=\left\{\begin{array}{ll}
-2(n+1) & \text { if } n \text { is odd } \\
2 n & \text { if } n \text { is even }
\end{array}\right\}, \quad b=n(-1)^{n+1} .
$$

(a) Prove the correctness of this loop with respect to the pre- and post-conditions.
(b) Suppose the "while" loop is as above, except that statement 2 is replaced by: $a:=a-b$. Run through the loop often enough, recording the various values of a and b that result, until you can predict what the post-condition value of b will be when $m=271$. What is your prediction? Explain.
(a) We first need to check that the loop invariant holds when $n=0$. Since 0 is even, $I(0)$ says $i=0, a=2 \cdot 0=0$, and $b=0(-1)^{1}=0$, and these are all true by the pre-conditions.

So now assume that the loop invariant $I(k)$ holds for some integer $k \geq 0$ where $k<m$. We want to prove that $I(k+1)$ holds, that is, that the loop invariant will still hold after one more pass through the loop. So we are assuming that

$$
\left\{\begin{array}{lll}
i=k, & a=-2(k+1), \quad b=k(-1)^{k+1}=k & \text { if } k \text { is odd, } \\
i=k, & a=2 k, \quad b=k(-1)^{k+1}=-k & \text { if } k \text { is even, }
\end{array}\right\}
$$

and we now go through the loop.

- Step 1: $\quad b:=a+b+1=\left\{\begin{array}{ll}-2(k+1)+k+1 & \text { if } k \text { is odd } \\ 2 k-k+1 & \text { if } k \text { is even }\end{array}\right\}$

$$
=\left\{\begin{array}{ll}
(k+1)(-1) & \text { if } k \text { is odd } \\
k+1 & \text { if } k \text { is even }
\end{array}\right\}=(k+1)(-1)^{k+2}
$$

which agrees with the formula for b in $I(k+1)$.

- Step 2: $\quad a:=a-4 b=\left\{\begin{array}{ll}-2(k+1)-4(-k-1) & \text { if } k \text { is odd } \\ 2 k-4(k+1) & \text { if } k \text { is even }\end{array}\right\}$

$$
=\left\{\begin{array}{ll}
2(k+1) & \text { if } k+1 \text { is even } \\
-2(k+2) & \text { if } k+1 \text { is odd }
\end{array}\right\},
$$

which agrees with the formula for a in $I(k+1)$.

- Step 3: $\quad i:=i+1=k+1$, which agrees with $I(k+1)$.

Thus $I(k+1)$ is true, as required.
Finally the loop stops when $i=m$, and we need to check that at that point the postcondition is satisfied. When $i=m$ it means that the loop invariant $I(m)$ must hold, so from $I(m)$ we know that $b=m(-1)^{m+1}$ as required.
(b) If we set the variables to their pre-condition values of $a=0, b=0$ and $i=0$, and run through the loop, the new values we get are $b=0+0+1=1, a=0-1=-1, i=1$. If we continue to run through the loop, and keep track of the variables in a table, here is what we get:

n	0	1	2	3	4	5	6
b	0	1	1	0	-1	-1	0
a	0	-1	-2	-2	-1	0	0
i	0	1	2	3	4	5	6

At this point (when $n=6$) our values of b and a are back to what they were at the beginning (when $n=0$), namely $b=a=0$. Since the loop calculates the new values of a and b only in terms of their old values, and not in terms of n for example, the values of a and b should continue to cycle through the same values in the above table. This means that $a=b=0$ whenever n is a multiple of $6, a=-1$ and $b=1$ whenever n is 1 plus a multiple of 6 , and so on. Since $271=6 \cdot 45+1$, when the loop ends (at $m=i=n=271$), we should have $b=\mathbf{1}$.

