1. For each integer $n \geq 1$, let \mathcal{S}_{n} be the statement: for all sets $A, B_{1}, B_{2}, \ldots, B_{n}$,

$$
\left(A-B_{1}\right) \cup\left(A-B_{2}\right) \cup \cdots \cup\left(A-B_{n}\right)=A-\left(B_{1} \cap B_{2} \cap \cdots \cap B_{n}\right) .
$$

(a) Prove that for all sets A, B and $C,(A-B) \cup(A-C)=A-(B \cap C)$. You may use the properties on page 272.
(b) Prove by induction on n (or well ordering) that \mathcal{S}_{n} is true for all integers $n \geq 1$.
(a) Using the identities on page 272, we get

$$
\begin{aligned}
(A-B) \cup(A-C) & =\left(A \cap B^{c}\right) \cup\left(A \cap C^{c}\right) \quad \text { by } \# 12 \\
& =A \cap\left(B^{c} \cup C^{c}\right) \quad \text { by } \# 3(\mathrm{~b}) \text { (distributive law) } \\
& =A \cap(B \cap C)^{c} \quad \text { by } \# 9(\mathrm{~b}) \text { (De Morgan's Law) } \\
& =A-(B \cap C) . \quad \text { by } \# 12
\end{aligned}
$$

(b) Basis step. When $n=1$ the statement \mathcal{S}_{1} says $A-B_{1}=A-B_{1}$, which is obviously true.
Inductive step. Assume that the statement \mathcal{S}_{k} is true for all sets $A, B_{1}, B_{2}, \ldots, B_{k}$, where $k \geq 1$ is an integer. We want to prove that the statement \mathcal{S}_{k+1} is true for all sets $A, B_{1}, B_{2}, \ldots, B_{k+1}$. So let $A, B_{1}, B_{2}, \ldots, B_{k+1}$ be sets. Then we want to prove that

$$
\begin{equation*}
\left(A-B_{1}\right) \cup\left(A-B_{2}\right) \cup \cdots \cup\left(A-B_{k+1}\right)=A-\left(B_{1} \cap B_{2} \cap \cdots \cap B_{k+1}\right) . \tag{1}
\end{equation*}
$$

Well,

$$
\begin{aligned}
\left(A-B_{1}\right) \cup(A- & \left.B_{2}\right) \cup \cdots \cup\left(A-B_{k+1}\right) \\
& =\left(\left(A-B_{1}\right) \cup\left(A-B_{2}\right) \cup \cdots \cup\left(A-B_{k}\right)\right) \cup\left(A-B_{k+1}\right) \\
& =\left(A-\left(B_{1} \cap B_{2} \cap \cdots \cap B_{k}\right)\right) \cup\left(A-B_{k+1}\right) \quad \text { by assumption } \\
& =A-\left(B_{1} \cap B_{2} \cap \cdots \cap B_{k} \cap B_{k+1}\right) \quad \text { by part (a) } \\
& =A-\left(B_{1} \cap B_{2} \cap \cdots \cap B_{k+1}\right)
\end{aligned}
$$

which proves (1). This finishes the inductive step. Therefore by induction, \mathcal{S}_{n} is true for all integers $n \geq 1$.
2. A sequence is called an A-sequence if every term is equal to 1,2 or 3 , and no two consecutive terms in the sequence are equal. Also, an A-sequence is called a B-sequence if the first and last terms are equal. So for example, 23121 is an A -sequence which is not a B-sequence, 23212 is both an A-sequence and a B-sequence, and 23122 is neither. For each integer $n \geq 2$, let a_{n} be the number of A-sequences of length n and let b_{n} be the number of B-sequences of length n.
(a) Show that $a_{n}=3 \cdot 2^{n-1}$ for all integers $n \geq 2$.
(b) Prove combinatorially that $b_{n}=a_{n-1}-b_{n-1}$ for all integers $n \geq 3$. [Hint: how can you make a B-sequence of length n from an A-sequence of length $n-1$?]
(c) Show $b_{2}=0$, and then use parts (a) and (b) to find b_{3}, b_{4} and b_{5}.
(d) Use your answers to part (c) (and more if you need them) to guess a simple formula for b_{n}. [Hint: how far away is b_{n} from a nearby power of 2?]
(e) Use parts (a) and (b) to prove your formula in (d) by induction (or well ordering) for all integers $n \geq 2$.
(a) We count how many ways there are to make an A-sequence of length n. There are 3 choices for the first term (1,2 or 3). After that each term can be any of 1,2 or 3 except for what the previous term is, so there are 2 choices for each of the $n-1$ terms after the first. By the multiplication rule, the number of A -sequences of length n must be $a_{n}=3 \cdot 2 \cdot 2 \cdots 2=3 \cdot 2^{n-1}$.
(b) To make a B-sequence of length n, we could take an A-sequence of length $n-1$ and add an nth term equal to the first term of the A -sequence. But for this to be allowed, the last two terms of the resulting sequence could not be equal, which means that the first and last terms of the original A-sequence cannot be equal. Thus we must start with an A-sequence which is not a B-sequence. There are $a_{n-1} \mathrm{~A}$-sequences of length $n-1$, and b_{n-1} of these are B -sequences, so there are $a_{n-1}-b_{n-1} \mathrm{~A}$-sequences of length $n-1$ which are not B-sequences. Each of them can be converted to a B-sequence of length n as described above, and every B-sequence of length n will arise this way. Therefore the number b_{n} of B-sequences of length n must equal $a_{n-1}-b_{n-1}$.
(c) A B-sequence of length 2 must start and end with the same symbol, so both of its terms must be equal, but this is not allowed. So there are no B-sequences of length 2, that is, $b_{2}=0$. Now from parts (a) and (b) we get

- $b_{3}=a_{2}-b_{2}=3 \cdot 2^{1}-0=6$,
- $b_{4}=a_{3}-b_{3}=3 \cdot 2^{2}-6=12-6=6$,
- $b_{5}=a_{4}-b_{4}=3 \cdot 2^{3}-6=24-6=18$.
(d) Since
- $b_{2}=0=2-2=2^{1}-2$,
- $b_{3}=6=4+2=2^{2}+2$,
- $b_{4}=6=8-2=2^{3}-2$, and
- $b_{5}=18=16+2=2^{4}+2$,
we can guess that $b_{n}=2^{n-1}-2$ for n even and $b_{n}=2^{n-1}+2$ for n odd, which could be written as:

$$
b_{n}=2^{n-1}-2(-1)^{n} \quad \text { for all integers } n \geq 2
$$

(e) Basis step. We already know that the formula $b_{n}=2^{n-1}-2(-1)^{n}$ is correct for $n=2$, since $b_{2}=0$.

Inductive step. Assume that $b_{k}=2^{k-1}-2(-1)^{k}$ is true for some integer $k \geq 2$. Then

$$
\begin{aligned}
b_{k+1} & =a_{k}-b_{k} \quad \text { by part }(\mathrm{b}) \\
& =3 \cdot 2^{k-1}-\left(2^{k-1}-2(-1)^{k}\right) \quad \text { by part (a) and by assumption } \\
& =2 \cdot 2^{k-1}+2(-1)^{k}=2^{k}-2(-1)^{k+1}
\end{aligned}
$$

which proves that the formula for b_{n} is true for $n=k+1$.
Therefore by induction, the formula for b_{n} is true for all integers $n \geq 2$.
Bonus question. Such a nice answer cries out for a nicer proof! Can you find a combinatorial proof that $b_{n}=2^{n-1}-2(-1)^{n}$? Maybe something like the proof in part (a), or something involving all subsets of an $(n-1)$-element set? But it would have to be rather clever, to account for the ± 2 in the formula. If you think you can get somewhere with this problem or have some ideas, tell your professor or TA. [Warning: neither of the professors in the course knows how to do this problem!]
3. A balanced subset of integers is a subset that has the same number of even integers as odd integers. For example, the subset $\{1,2,4,9\}$ is balanced, but $\{1,2,3\}$ is not. For each positive integer n, let b_{n} be the number of balanced subsets of $\{1,2, \ldots, 2 n\}$.
(a) Prove combinatorially that for all positive integers n,

$$
b_{n}=\sum_{i=0}^{n}\binom{n}{i}^{2}=1+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n-1}^{2}+1
$$

(b) Use part (a) to calculate b_{1}, b_{2} and b_{3}.
(c) Use your answers to part (b) to guess a formula for b_{n} which is a single binomial coefficient involving n. [Hint: write out Pascal's Triangle (page 359) up to $n=6$.]
(d) Prove your formula in part (c) combinatorially for all integers $n \geq 1$. [Hint: what if you construct a balanced subset of $\{1,2, \ldots, 2 n\}$ by choosing which even integers to put in your subset and which odd integers to leave out of your subset? How many integers would you choose altogether?]
(a) We count the balanced subsets of $\{1,2, \ldots, 2 n\}$ by counting how many balanced subsets there are of each size separately and adding these numbers together. There is only one way to choose a balanced subset of no elements, namely the empty set. There are $\binom{n}{1}$ ways to choose one even integer from $\{1,2, \ldots, 2 n\}$ and $\binom{n}{1}$ ways to choose one odd integer from $\{1,2, \ldots, 2 n\}$, so by the multiplication rule there are $\binom{n}{1}\binom{n}{1}=\binom{n}{1}^{2}$ ways to choose a balanced subset of size 2 . In general, for each $k \in\{0,1, \ldots, n\}$, there are $\binom{n}{k}$ ways to choose k even integers from $\{1,2, \ldots, 2 n\}$ and $\binom{n}{k}$ ways to choose k odd integers from $\{1,2, \ldots, 2 n\}$, so by the multiplication rule there are $\binom{n}{k}\binom{n}{k}=\binom{n}{k}^{2}$ ways to choose a balanced subset of size $2 k$. Therefore by the addition rule, there are

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=1+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n-1}^{2}+1
$$

balanced subsets of $\{1,2, \ldots, 2 n\}$ altogether, so this must equal b_{n}.
(b) From part (a),

- $b_{1}=\binom{1}{0}^{2}+\binom{1}{1}^{2}=1+1=2$;
- $b_{2}=\binom{2}{0}^{2}+\binom{2}{1}^{2}+\binom{2}{2}^{2}=1+2^{2}+1=6$;
- $b_{3}=\binom{3}{0}^{2}+\binom{3}{1}^{2}+\binom{3}{2}^{2}+\binom{3}{3}^{2}=1+3^{2}+3^{2}+1=20$.
(c) We know that $b_{1}=2=\binom{2}{1}$. Looking at the fourth row $(1,4,6,4,1)$ of Pascal's Triangle we see that $\binom{4}{2}=6=b_{2}$. Looking at the sixth row $(1,6,15,20,15,6,1)$ of Pascal's Triangle we see that $\binom{6}{3}=20=b_{3}$. So we guess that $b_{n}=\binom{2 n}{n}$ for every positive integer n.
(d) We can make a balanced subset of $\{1,2, \ldots, 2 n\}$ by choosing k even numbers from this set, and then choosing $n-k$ odd numbers to leave out (so that the remaining k odd numbers from $\{1,2, \ldots, 2 n\}$ are added in with the k even numbers to make a balanced set). Thus we are choosing $k+(n-k)=n$ numbers from $\{1,2, \ldots, 2 n\}$ to create the balanced set this way. Moreover, if we choose any set S of n numbers from $\{1,2, \ldots, 2 n\}$, we can make a balanced subset of $\{1,2, \ldots, 2 n\}$ out of S in the above way: if S includes (say) k even integers, then it must have $n-k$ odd integers, so there must be exactly k odd integers from $\{1,2, \ldots, 2 n\}$ which are not included in S; so just keep all the even integers in S plus all the odd integers in $\{1,2, \ldots, 2 n\}$ which are not in S, and we get a balanced subset of $\{1,2, \ldots, 2 n\}$. Thus the number of balanced subsets of $\{1,2, \ldots, 2 n\}$ is the same as the number of n-element subsets of $\{1,2, \ldots, 2 n\}$, which is $\binom{2 n}{n}$. Thus $b_{n}=\binom{2 n}{n}$.
Note. This fact is in Exercise 19, page 362.

