
MATH 271 ASSIGNMENT 4 SOLUTIONS

1. If f : X → X is a function, define f2(x) to be (f ◦f)(x), and inductively define fk(x) = (f ◦fk−1)(x)
for each integer k ≥ 3. (So f3(x) = (f ◦ f2)(x) = f(f(f(x))) for instance.) We also define f1(x) to
be f(x).

Let f : Z → Z be defined by: for all n ∈ Z, f(n) = n + 1 + 2(−1)n =

{
n + 3 if n is even,
n− 1 if n is odd.

(a) Find f2(n), f3(n), and f4(n).

(b) Use part (a) (and more data if you need it) to guess a fairly simple formula for fk(n) for any
positive integer k. (You may need to consider k odd and k even separately.)

(c) Use induction on k (or well ordering) to prove your guess.

(d) Use your formula for fk(n) to find f2008(271).

(e) Define g : Z → Z by: for all n ∈ Z, g(n) =

{
n + 3 if n is even,
1− n if n is odd.

Calculate g2(n), g3(n), and g4(n), and use them (and more data if you need it) to predict
what g2008(271) is.

(a) We get

f 2(n) = f(f(n)) = f(n + 1 + 2(−1)n)

= (n + 1 + 2(−1)n) + 1 + 2(−1)n+1+2(−1)n

= n + 2 + 2(−1)n + 2(−1)n+1 since 2(−1)n is even

= n + 2 since n and n + 1 are of opposite parity,

f 3(n) = f(f 2(n)) = f(n + 2) = (n + 2) + 1 + 2(−1)n+2 = n + 3 + 2(−1)n,

f 4(n) = f(f 3(n)) = f(n + 3 + 2(−1)n)

= (n + 3 + 2(−1)n) + 1 + 2(−1)n+3+2(−1)n

= n + 4 + 2(−1)n + 2(−1)n+3 since 2(−1)n is even

= n + 4 since n and n + 3 are of opposite parity.

(b) From part (a) we would guess that

fk(n) =

{
n + k + 2(−1)n if k is odd,
n + k if k is even.

(c) Basis step. Our guessed formulas for fk(n) are true for k = 1, 2, 3 and 4, by part (a).

Inductive step. Assume that our guessed formula is true for some integer k = ` ≥ 1.
We want to prove that our formula is true when k = ` + 1. We do this in two cases:

Case (i): ` is even. So we assume that f `(n) = n + `, and we want to prove that
f `+1(n) = n + ` + 1 + 2(−1)n.

1



Well, we get

f `+1(n) = f(f `(n)) = f(n + `) = n + ` + 1 + 2(−1)n+` = n + ` + 1 + 2(−1)n,

since ` is even, so the inductive step works in this case.

Case (ii): ` is odd. This time we assume that f `(n) = n + ` + 2(−1)n, and we want to
prove that f `+1(n) = n + ` + 1. We get

f `+1(n) = f(f `(n)) = f(n + ` + 2(−1)n)

= (n + ` + 2(−1)n) + 1 + 2(−1)n+`+2(−1)n

= n + ` + 1 + 2(−1)n + 2(−1)n+` since 2(−1)n is even

= n + ` + 1 since n and n + ` are of opposite parity,

so the inductive step works in this case too. Therefore the guessed formula is true for
all integers k ≥ 1.

(d) By the formula, since 2008 is even, f 2008(271) = 271 + 2008 = 2279.

(e) We get

g2(n) = g(g(n)) =

{
g(n + 3) if n is even,
g(1− n) if n is odd.

=

{
1− (n + 3) if n is even (since n + 3 is odd),
(1− n) + 3 if n is odd (since 1− n is even).

=

{
−n− 2 if n is even,
−n + 4 if n is odd.

g3(n) = g(g2(n)) =

{
g(−n− 2) if n is even,
g(−n + 4) if n is odd.

=

{
(−n− 2) + 3 if n is even (since −n− 2 is even),
1− (−n + 4) if n is odd (since −n + 4 is odd).

=

{
−n + 1 if n is even,
n− 3 if n is odd.

g4(n) = g(g3(n)) =

{
g(−n + 1) if n is even,
g(n− 3) if n is odd.

=

{
1− (−n + 1) if n is even (since −n + 1 is odd),
(n− 3) + 3 if n is odd (since n− 3 is even).

= n for all n ∈ Z.

Now g5(n) = g(g4(n)) = g(n), and so g6(n) = g(g5(n)) = g(g(n)) = g2(n), and so on;
the formulas for gk(n) will cycle through the above four functions forever. In particular,
since 2008 is a multiple of 4, g2008(n) will equal n for all n, so g2008(271) = 271.
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2. For each integer n ≥ 2, let Sn be the “star-like” graph shown at the right, where
there are n + 1 vertices altogether, including the one in the middle. ZZ
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(a) Find a formula (in terms of n) for the number of paths of length 2 in Sn. [Hint: how many
such paths start at each vertex?]

(b) Find a formula (in terms of n) for the number of walks of length 2 in Sn.

(c) Write out the (n + 1) × (n + 1) adjacency matrix Mn of Sn in general. Then find M2
n, and

explain what it has to do with your answer to part (b).

(d) Prove that for any simple graph G, the number of walks in G of length 2 is always even. [Hint:
how can you pair up the walks?]

(a) Since paths cannot repeat vertices, there are no paths of length 2 starting at vertex 0,
because once we go from 0 to one of the other vertices we are stuck. If we start at one
of the other vertices, say at vertex 1, then we must go to vertex 0, and from there we
have n − 1 choices for the third vertex, namely any vertex except vertex 0 or 1. So
there are n− 1 paths of length 2 starting from vertex 1. By symmetry there are n− 1
paths of length 2 starting from any of the vertices 1 to n, so there are n(n − 1) paths
of length 2 in Sn altogether.

(b) For walks we are allowed to repeat vertices, so if we start at vertex 0 we can go to any
of the vertices 1 to n, and then we must go back to 0. So there are n walks of length 2
starting at vertex 0. If we start at vertex 1 instead, then we must go to vertex 0, and
then we can go to any of the vertices 1 to n, so there are n walks of length 2 starting
at vertex 1. Again by symmetry there are n walks of length 2 starting from any of the
vertices 1 to n, so there are n + n(n) = n + n2 walks of length 2 in Sn.

(c) If we order the rows and columns in the natural way (with the vertices in the order
0, 1, 2, . . . , n), we will get

Mn =



0 1 1 1 · · · 1
1 0 0 0 · · · 0
1 0 0 0 · · · 0
1 0 0 0 · · · 0
...

...
...

... · · · ...
1 0 0 0 · · · 0


, and so M2

n =



n 0 0 0 · · · 0
0 1 1 1 · · · 1
0 1 1 1 · · · 1
0 1 1 1 · · · 1
...

...
...

... · · · ...
0 1 1 1 · · · 1


.

The matrix M2
n tells us how many walks of length 2 the graph Sn has between all

possible pairs of vertices. Since the sum of all the entries in M2
n is n + n2, this must be

the number of walks of length 2 in Sn, which agrees with our answer in part (b).

(d) In a simple graph G, every walk of length 2 is either of the form abc, where a, b, c are
three different vertices, or of the form aba where a and b are different vertices. Walks
of the first kind can be paired up by pairing each walk abc with the walk cba. Walks of
the second kind can be paired up by pairing each walk aba with the walk bab. Thus all
walks of length 2 are paired up, so there must be an even number of them altogether.
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3. For each integer n ≥ 3, let Gn be the graph whose vertices are all two-element subsets of {1, 2, . . . , n},
and with edges defined as follows: for any vertices A and B of Gn (so A and B are two-element
subsets of {1, 2, . . . , n}), A and B are adjacent if and only if N(A ∩ B) = 1 (where N(X) is the
number of elements in the set X).

(a) Draw the graphs G3 and G4. [You can label the vertex {i, j} as just ij if you like.]

(b) For each integer n ≥ 3, find and prove formulas (in terms of n) for the number of vertices in
Gn, the degree of each vertex, and the number of edges in Gn.

(c) For which n does Gn have an Euler circuit? Explain.

(d) For which n does Gn have a Hamiltonian circuit? Explain. [Hint: induction on n.]

(a) For G3 the vertices are all two-element subsets of {1, 2, 3}, so they are 12, 13 and 23
(writing the subset {1, 2} as just 12 for instance). For G4 the vertices are similarly 12,
13, 14, 23, 24 and 34. We get
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(b) The number of vertices in Gn is

(
n
2

)
, the number of 2-element subsets of {1, 2, . . . , n}.

The degree of the vertex 12 of Gn is the number of 2-element subsets of {1, 2, . . . , n}
which contain either 1 or 2 (but not both). There are n − 2 2-element subsets that
contain 1 but not 2, and n−2 2-element subsets that contain 2 but not 1, so the degree
of 12 must be 2(n − 2) = 2n − 4. By symmetry the degree of every vertex of Gn is
2n− 4.

From above, the sum of the degrees of the vertices of Gn must be the number of vertices
times the degree of each vertex, which is

(
n
2

)
(2n−4). This is twice the number of edges,

so the number of edges in Gn must be

1

2

(
n

2

)
(2n− 4) =

(
n

2

)
(n− 2) =

n(n− 1)(n− 2)

2
.

(c) It is clear that Gn is connected, because if ab and cd are arbitrary nonadjacent vertices
of Gn, then ab, ad, cd is a walk in Gn from ab to cd.

Now, since the degree of each vertex of Gn is 2n − 4 which is even, Gn will have an
Euler circuit for all integers n ≥ 3.

(d) We prove by induction on n that Gn has a Hamiltonian circuit for each integer n ≥ 3.

Basis step. It is easy to see from the graph that G3 has a Hamiltonian circuit, for
example 12, 13, 23, 12 is a Hamiltonian circuit in G3.

Inductive step. Assume that Gk has a Hamiltonian circuit for some integer k ≥ 3.
This means that there is a circuit in Gk containing each vertex exactly once (except
that the first vertex equals the last vertex). We can start this circuit at any vertex we
like, so let’s say we start it at the vertex 12. The second vertex in the circuit must be
a 2-element subset of {1, 2, . . . , k} which contains either 1 or 2 (but not both), so by
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symmetry we can assume it is 1k. So the Hamiltonian circuit starts off 12, 1k and so
on, eventually ending back at 12 after going through each vertex of Gk exactly once.

We want to find a Hamiltonian circuit in Gk+1, and we will use the Hamiltonian circuit
in Gk to do this. The vertices of Gk+1 which are not vertices of Gk are just the 2-element
subsets of {1, 2, . . . , k+1} which contain k+1, so they are 1(k+1), 2(k+1), . . . , k(k+1).
All the edges in Gk are still in Gk+1, so we replace the edge 12, 1k of the Hamiltonian
circuit in Gk by the path 12, 1(k + 1), 2(k + 1), . . . , k(k + 1), 1k, and then we will get
a Hamiltonian circuit in Gk+1. Note that this is allowed, since each two consecutive
vertices of the path 12, 1(k + 1), 2(k + 1), . . . , k(k + 1), 1k have an element in common,
so they are adjacent in Gk+1.

For example, the Hamiltonian circuit 12, 13, 23, 12 in G3 would be used to make the
Hamiltonian circuit 12, 14, 24, 34, 13, 23, 12 in G4, by replacing the edge 12, 13 by the
path 12, 14, 24, 34, 13 in G4, which contains all the vertices in G4 which are not in G3.

This completes the inductive step. By induction, Gn has a Hamiltonian circuit for every
integer n ≥ 3.
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