MATHEMATICS 271 WINTER 2008

 MDTERM SOLUTION Thursday, March 13, 2008.[6] 1. Use the Euclidean algorithm to find $\operatorname{gcd}(72,17)$. Then use your work to write $\operatorname{gcd}(72,17)$ in the form $72 a+17 b$ where a and b are integers.
Solution: We have

$$
\begin{aligned}
72 & =4 \times 17+4 \\
17 & =4 \times 4+1 \\
4 & =4 \times 1+0
\end{aligned}
$$

and so we get $\operatorname{gcd}(72,17)=1$, and $\operatorname{gcd}(72,17)=1=17-4 \times 4=17-4 \times(72-4 \times 17)=72 \times(-4)+17 \times 17$.

Another way is using the "table method" as follows.

		72	17
	72	1	0
	17	0	1
$R_{1}-4 R_{2}$	4	1	-4
$R_{2}-4 R_{3}$	1	-4	17

Thus, $\operatorname{gcd}(72,17)=1$ and $\operatorname{gcd}(72,17)=72 \times(-4)+17 \times 17$.
[6] 2. Let \mathcal{S} be the statement:
"For all sets A and B, if $A \cup B=\{1,2\}$ then $\{1,2\} \in \mathcal{P}(A) \cup \mathcal{P}(B)$."
(Here $\mathcal{P}(X)$ denotes the power set of the set X.)
(a) Write (as simply as possible) the negation of the statement \mathcal{S}.

Solution: The negation of the statement \mathcal{S} is: "There exists sets A and B so that $A \cup B=$ $\{1,2\}$, but $\{1,2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$."

Comment: The negation of the statement \mathcal{S} is NOT: "There exists sets A and B so that IF $A \cup B=\{1,2\}$ THEN $\{1,2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.". We see that both this statement and \mathcal{S} are (vacuously) true when $A=B=\emptyset$.
(b) Disprove the statement \mathcal{S}.

Solution: We disprove the statement \mathcal{S} by proving its negation stated above. The statement \mathcal{S} is false because for example, when $A=\{1\}$ and $B=\{2\}, A \cup B=\{1,2\}$, but $\{1,2\} \notin$ $\mathcal{P}(A) \cup \mathcal{P}(B)$ because $\mathcal{P}(A) \cup \mathcal{P}(B)=\{\emptyset,\{1\}\} \cup\{\emptyset,\{2\}\}=\{\emptyset,\{1\},\{2\}\}$.
[11] 3. Let \mathcal{S} be the statement: "For all integers n, if $6 \mid n$ then $9 \mid\left(n^{2}+3 n\right)$."
(a) Is \mathcal{S} true? Give a proof or disproof.

Solution: \mathcal{S} is true and here is a proof. Let n be an integer and suppose that $6 \mid n$. Since $6 \mid n$, there exists an integer k such that $n=6 k$. Then $n^{2}+3 n=(6 k)^{2}+3 \times(6 k)=$ $36 k^{2}+18 k=9\left(4 k^{2}+2 k\right)$ where $4 k^{2}+2 k$ is an integer, which implies that $9 \mid\left(n^{2}+3 n\right)$.
(b) Write (as simply as possible) the contrapositive of the statement \mathcal{S}. Is it true or false? Explain.
Solution: The contrapositive of the statement \mathcal{S} is: "For all integers n, if $9 \nmid\left(n^{2}+3 n\right)$ then $6 \nmid n$.". The contrapositive of the statement \mathcal{S} is true because it is logically equivalent to \mathcal{S} which is true as proven in part (a).
(c) Write (as simply as possible) the converse of the statement \mathcal{S}. Is it true or false? Explain.
Solution: The converse of the statement \mathcal{S} is: "For all integers n, if $9 \mid\left(n^{2}+3 n\right)$ then $6 \mid n . "$. The converse of the statement \mathcal{S} is false. For example, considering the integer $n=3$, we see that $9 \mid\left(3^{2}+3 \times 3\right)$ because $3^{2}+3 \times 3=18=9 \times 2$, but $6 \nmid 3$.
[6] 4. Of the following two statements, one is true and one is false. Prove the true statement. Disprove the false statement by writing out its negation and prove that. (\mathbb{Z} denotes the set of all integers.)
(a) $\forall A \subseteq \mathbb{Z} \exists B \subseteq \mathbb{Z}$ so that $1 \in B-A$.

Solution: This statement is false. Its negation is: " $\exists A \subseteq \mathbb{Z}$ so that $\forall B \subseteq \mathbb{Z}, 1 \notin B-A$.", and a proof of the negation is as follows. Let $A=\{1\}$. Then $A \subseteq \mathbb{Z}$, and for any set $B \subseteq \mathbb{Z}$, we see that $1 \notin B-A$ (because $1 \in A$). Actually, we can choose A to be any subset of \mathbb{Z} which contains the element 1.

Comment: To prove the existence of such a set A, you must choose a specific subset A of \mathbb{Z} first and then prove that for all subsets B of $\mathbb{Z}, 1 \notin B-A$.
(b) $\forall A \subseteq \mathbb{Z} \exists B \subseteq \mathbb{Z}$ so that $1 \notin B-A$.

Solution: This statement is true and here is a proof. Let $A \subseteq \mathbb{Z}$. Let $B=\emptyset$. Then $B-A=\emptyset-A=\emptyset$, and $1 \notin \emptyset$ and so $1 \notin B-A$. Actually, we can choose B to be any subset of \mathbb{Z} which does not contain the element 1 .

Comment: Here, you must assume that A is an arbitrary subset of \mathbb{Z} first and then choose a subset B of \mathbb{Z} after (note that B can be expressed in term of A), and (2) you can not choose B to be the set $\{\emptyset\}$ which is not empty, and is not a subset of \mathbb{Z}.
[5] 5. You are given that A and B are arbitrary subsets of the set \mathbb{Z} of all integers such that $A \cap B=\{1\}$.
(a) Find an element of $A \times B$. Explain.

Solution: An element of $A \times B$ is $(1,1)$. Proof: Since $1 \in\{1\}=A \cap B$, we have $1 \in A$ and $1 \in B$, and so $1 \in A \cap B$.
(b) Find an element of the complement $(A \times B)^{c}$. (Here, assume the universal set is $\mathbb{Z} \times \mathbb{Z}$.) Explain.
Solution: An element of $(A \times B)^{c}$ is $(0,0)$. Proof (by contradiction): Suppose that $(0,0) \notin$ $(A \times B)^{c}$. Then $(0,0) \in A \times B$, which means $0 \in A$ and $0 \in B$, and so $0 \in A \cap B$, which contradicts the assumption that $A \cap B=\{1\}$. Thus, $(0,0) \in(A \times B)^{c}$. Actually, we see that $(n, n) \in(A \times B)^{c}$ for any integer $n \neq 1$.
[6] 6. Prove using mathematical induction (or well ordering) that $2^{n}+2 n \leq 3^{n}$ for all integers $n \geq 2$.
Solution: We prove that $2^{n}+2 n \leq 3^{n}$ for all integers $n \geq 2$ using mathematical induction on n.
Basis step: When $n=2$, we have $2^{n}+2 n=2^{2}+2 \times 2=8 \leq 9=3^{2}=3^{n}$. Thus, the statement is true for the case $n=2$.

Inductive step: Let $k \geq 2$ be an integer and suppose that $2^{k}+2 k \leq 3^{k}$. We want to show that $2^{k+1}+2(k+1) \leq 3^{k+1}$.

Now,

$$
\begin{aligned}
2^{k+1}+2(k+1) & =2 \times 2^{k}+2 k+2 & & \\
& <2 \times 2^{k}+2 k+2 k & & \text { because } 2<2 k \text { as } 1<k \\
& =2\left(2^{k}+2 k\right) & & \\
& \leq 2 \times 3^{k} & & \text { by assumption } \\
& \leq 3 \times 3^{k} & & \text { because } 2 \leq 3 \text { and } 3^{k}>0 \\
& =3^{k+1} & &
\end{aligned}
$$

Thus, we prove the inductive step.
Therefore, we proved that $2^{n}+2 n \leq 3^{n}$ for all integers $n \geq 2$.
Comment: The most common mistake we found is that when students want to prove $2^{k+1}+2(k+1) \leq 3^{k+1}$ (let's call this \mathcal{P}), they use \mathcal{P} to derive another inequality \mathcal{Q}, then prove \mathcal{Q} is true. This does not prove that \mathcal{P} is true. However, you can prove \mathcal{P} by first proving that \mathcal{P} is equivalent to \mathcal{Q} and then proving \mathcal{Q}.

