MATHEMATICS 271 WINTER 2008 MDTERM SOLUTION Thursday, March 13, 2008.

[6] **1**. Use the Euclidean algorithm to find gcd(72, 17). Then use your work to write gcd(72, 17) in the form 72a + 17b where a and b are integers. Solution: We have

$$\begin{array}{rcl} 72 & = & 4 \times 17 + 4 \\ 17 & = & 4 \times 4 + 1 \\ 4 & = & 4 \times 1 + 0, \end{array}$$

and so we get gcd(72, 17) = 1, and

 $gcd(72,17) = 1 = 17 - 4 \times 4 = 17 - 4 \times (72 - 4 \times 17) = 72 \times (-4) + 17 \times 17.$ Another way is using the "table method" as follows.

		72	17
	72	1	0
	17	0	1
$R_1 - 4R_2$	4	1	-4
$R_2 - 4R_3$	1	-4	17

Thus, gcd(72, 17) = 1 and $gcd(72, 17) = 72 \times (-4) + 17 \times 17$.

[6] **2**. Let \mathcal{S} be the statement:

"For all sets A and B, if $A \cup B = \{1, 2\}$ then $\{1, 2\} \in \mathcal{P}(A) \cup \mathcal{P}(B)$."

(Here $\mathcal{P}(X)$ denotes the power set of the set X.)

(a) Write (as simply as possible) the *negation* of the statement S.

Solution: The negation of the statement S is: "There exists sets A and B so that $A \cup B = \{1, 2\}$, but $\{1, 2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$."

Comment: The negation of the statement S is NOT: "There exists sets A and B so that IF $A \cup B = \{1, 2\}$ THEN $\{1, 2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$." We see that both this statement and S are (vacuously) true when $A = B = \emptyset$.

(b) Disprove the statement \mathcal{S} .

Solution: We disprove the statement S by proving its negation stated above. The statement S is false because for example, when $A = \{1\}$ and $B = \{2\}$, $A \cup B = \{1, 2\}$, but $\{1, 2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$ because $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}\} \cup \{\emptyset, \{2\}\} = \{\emptyset, \{1\}, \{2\}\}.$

[11] **3**. Let S be the statement: "For all integers n, if $6 \mid n$ then $9 \mid (n^2 + 3n)$." (a) Is S true? Give a proof or disproof.

Solution: S is true and here is a proof. Let n be an integer and suppose that $6 \mid n$. Since $6 \mid n$, there exists an integer k such that n = 6k. Then $n^2 + 3n = (6k)^2 + 3 \times (6k) = 36k^2 + 18k = 9(4k^2 + 2k)$ where $4k^2 + 2k$ is an integer, which implies that $9 \mid (n^2 + 3n)$.

(b) Write (as simply as possible) the *contrapositive* of the statement S. Is it true or false? Explain.

Solution: The contrapositive of the statement S is: "For all integers n, if $9 \nmid (n^2 + 3n)$ then $6 \nmid n$.". The contrapositive of the statement S is true because it is logically equivalent to S which is true as proven in part (a).

(c) Write (as simply as possible) the *converse* of the statement S. Is it true or false? Explain.

Solution: The converse of the statement S is: "For all integers n, if $9 \mid (n^2 + 3n)$ then $6 \mid n$.". The converse of the statement S is false. For example, considering the integer n = 3, we see that $9 \mid (3^2 + 3 \times 3)$ because $3^2 + 3 \times 3 = 18 = 9 \times 2$, but $6 \nmid 3$.

[6] **4**. Of the following two statements, one is true and one is false. Prove the true statement. Disprove the false statement by writing out its negation and prove that. (\mathbb{Z} denotes the set of all integers.)

(a) $\forall A \subseteq \mathbb{Z} \exists B \subseteq \mathbb{Z}$ so that $1 \in B - A$.

Solution: This statement is false. Its negation is: " $\exists A \subseteq \mathbb{Z}$ so that $\forall B \subseteq \mathbb{Z}$, $1 \notin B - A$.", and a proof of the negation is as follows. Let $A = \{1\}$. Then $A \subseteq \mathbb{Z}$, and for any set $B \subseteq \mathbb{Z}$, we see that $1 \notin B - A$ (because $1 \in A$). Actually, we can choose A to be any subset of \mathbb{Z} which contains the element 1.

Comment: To prove the existence of such a set A, you must choose a specific subset A of \mathbb{Z} first and then prove that for all subsets B of \mathbb{Z} , $1 \notin B - A$.

(b) $\forall A \subseteq \mathbb{Z} \exists B \subseteq \mathbb{Z}$ so that $1 \notin B - A$.

Solution: This statement is true and here is a proof. Let $A \subseteq \mathbb{Z}$. Let $B = \emptyset$. Then $B - A = \emptyset - A = \emptyset$, and $1 \notin \emptyset$ and so $1 \notin B - A$. Actually, we can choose B to be any subset of \mathbb{Z} which does not contain the element 1.

Comment: Here, you must assume that A is an arbitrary subset of \mathbb{Z} first and then choose a subset B of \mathbb{Z} after (note that B can be expressed in term of A), and (2) you can not choose B to be the set $\{\emptyset\}$ which is not empty, and is not a subset of \mathbb{Z} .

[5] 5. You are given that A and B are arbitrary subsets of the set \mathbb{Z} of all integers such that $A \cap B = \{1\}$.

(a) Find an element of $A \times B$. Explain.

Solution: An element of $A \times B$ is (1, 1). Proof: Since $1 \in \{1\} = A \cap B$, we have $1 \in A$ and $1 \in B$, and so $1 \in A \cap B$.

(b) Find an element of the complement $(A \times B)^c$. (Here, assume the universal set is $\mathbb{Z} \times \mathbb{Z}$.) Explain.

Solution: An element of $(A \times B)^c$ is (0, 0). Proof (by contradiction): Suppose that $(0, 0) \notin (A \times B)^c$. Then $(0, 0) \in A \times B$, which means $0 \in A$ and $0 \in B$, and so $0 \in A \cap B$, which contradicts the assumption that $A \cap B = \{1\}$. Thus, $(0, 0) \in (A \times B)^c$. Actually, we see that $(n, n) \in (A \times B)^c$ for any integer $n \neq 1$.

[6] 6. Prove using mathematical induction (or well ordering) that $2^n + 2n \leq 3^n$ for all integers $n \geq 2$.

Solution: We prove that $2^n + 2n \leq 3^n$ for all integers $n \geq 2$ using **mathematical induction** on n.

Basis step: When n = 2, we have $2^n + 2n = 2^2 + 2 \times 2 = 8 \le 9 = 3^2 = 3^n$. Thus, the statement is true for the case n = 2.

Inductive step: Let $k \ge 2$ be an integer and suppose that $2^k + 2k \le 3^k$. We want to show that $2^{k+1} + 2(k+1) \le 3^{k+1}$.

Now,

$$2^{k+1} + 2(k+1) = 2 \times 2^{k} + 2k + 2$$

$$< 2 \times 2^{k} + 2k + 2k \qquad \text{because } 2 < 2k \text{ as } 1 < k$$

$$= 2(2^{k} + 2k)$$

$$\leq 2 \times 3^{k} \qquad \text{by assumption}$$

$$\leq 3 \times 3^{k} \qquad \text{because } 2 \leq 3 \text{ and } 3^{k} > 0$$

$$= 3^{k+1}.$$

Thus, we prove the inductive step.

Therefore, we proved that $2^n + 2n \leq 3^n$ for all integers $n \geq 2$.

Comment: The most common mistake we found is that when students want to prove $2^{k+1} + 2(k+1) \leq 3^{k+1}$ (let's call this \mathcal{P}), they use \mathcal{P} to derive another inequality \mathcal{Q} , then prove \mathcal{Q} is true. This does not prove that \mathcal{P} is true. However, you can prove \mathcal{P} by first proving that \mathcal{P} is equivalent to \mathcal{Q} and then proving \mathcal{Q} .