THE UNIVERSITY OF CALGARY
 FACULTY OF SCIENCE
 MATHEMATICS 271
 FINAL EXAMINATION, WINTER 2005
 TIME: 3 HOURS

NAME \qquad ID Section

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	
max. 80$)$	

SHOW ALL WORK. NO CALCULATORS PLEASE.
THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [80]. THIS EXAM HAS 9 PAGES INCLUDING THIS ONE.
[8] 1. (a) Use the Euclidean algorithm to find $\operatorname{gcd}(100,87)$. Then write the gcd in the form $100 x+87 y$ where x and y are integers.
(b) Use part (a) to find an inverse for 87 modulo 100.
[12] 2. Let \mathcal{S} be the statement "For all integers a and b, if $a \mid b$ then (10a) |(5b)." (a) Is \mathcal{S} true? Give a proof or disproof.
(b) Write out the converse of \mathcal{S}, and give a proof or disproof.
(c) Write out the contrapositive of \mathcal{S}, and give a proof or disproof.
3. Let X be the set $\{1,2, \ldots, 10\}$, and define the relation \mathcal{R} on the power set $\mathcal{P}(X)$ of all subsets of X by: for any sets $A, B \in \mathcal{P}(X), A \mathcal{R} B$ if and only if the intersection $A \cap B$ contains at most one element.
[6] (a) Is \mathcal{R} reflexive? Symmetric? Transitive? Give reasons.
[4] (b) Suppose $A=\{1,2,3\}$. Find the number of sets B in $\mathcal{P}(X)$ so that $A \mathcal{R} B$.
4. \mathbf{Z} denotes the set of all integers.
[2] (a) Define the statement $a \equiv b(\bmod 9)$, where $a, b \in \mathbf{Z}$.
$[2]$ (b)We know that $\equiv(\bmod 9)$ is an equivalence relation on \mathbf{Z}. Find three elements in the equivalence class [19].
[4] (c) Suppose that $a, b \in \mathbf{Z}$ satisfy $a \equiv b(\bmod 9)$. Prove by contradiction that $a+1 \not \equiv b$ $(\bmod 9)$, using the definition of $\equiv(\bmod 9)$.
[4] 5. (a) Give an example of an equivalence relation on the set $\{a, b, c, d\}$ that has exactly three equivalence classes.
(b) Find and simplify the number of equivalence relations on the set $\{a, b, c, d\}$ that have exactly three equivalence classes.
[8] 6. (a) \mathbf{Z} denotes the set of all integers. Prove or disprove each of the following two statements:
(i) $\forall a \in \mathbf{Z}, 2 a$ is odd or $3 a$ is even.
(ii) $\exists a \in \mathbf{Z}$ such that: if $2 a$ is odd then $3 a$ is even.
(b) Write the negation of each statement in part (a).
7. Let $A=\{1,2,3\}$. One of the following two statements is true and one is false. Prove or disprove each statement.
[3] (a) \exists a function $f: A \rightarrow A$, so that $\forall g: A \rightarrow A,(f \circ g)(1)=1$.
[3] (b) \exists a function $f: A \rightarrow A$, so that $\forall g: A \rightarrow A,(g \circ f)(1)=1$.
8. Let $A=\{1,2,3\}$, and let the function $f: A \rightarrow A$ be defined by: $f(1)=2, f(2)=1$, $f(3)=1$.
[3] (a) Find the number of functions $g: A \rightarrow A$ so that $(f \circ g)(1)=1$.
[3] (b) Find the number of functions $g: A \rightarrow A$ so that $(g \circ f)(1)=1$.
9. Let G be the graph

[2] (a) Find an Euler circuit in G.
[2] (b) Find a Hamiltonian circuit in G.
[2] (c) Find a subgraph of G isomorphic to the complete graph K_{3}.
[4] (d) Draw two graphs with the following properties: each graph has exactly six vertices, of which four vertices have degree 2 and two vertices have degree 4; also one of the graphs contains a subgraph isomorphic to K_{3}, and the other graph does not contain a subgraph isomorphic to K_{3}.
[8] 10. Let the sequence $\left(a_{n}\right)$ for $n \geq 1$ be defined by: $a_{1}=2$, and $a_{n}=8 n-3 a_{n-1}-6$ for all integers $n \geq 2$. Prove by mathematical induction that $a_{n}=2 n$ for all $n \geq 1$.

