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MATHEMATICS 271 MID-TERM TEST SOLUTIONS Wednesday, 9 March 2005

SHOW ALL WORK. Marks for each problem are to the left of the problem number.
NO CALCULATORS PLEASE.

[4] 1. Use the Euclidean algorithm to find gcd(74, 35).

Recall from lecture: if a and b are positive integers, then

gcd(a, b) = gcd(b, a mod b).

By repeated application of this principle, we have the following:

74 = 2 · 35 + 4 =⇒ 74 mod 35 = 4 =⇒ gcd(74, 35) = gcd(35, 4)

35 = 8 · 4 + 3 =⇒ 35 mod 4 = 3 =⇒ gcd(35, 4) = gcd(4, 3)

4 = 1 · 3 + 1 =⇒ 4 mod 3 = 1 =⇒ gcd(4, 3) = gcd(3, 1)

3 = 3 · 1 + 0 =⇒ 3 mod 1 = 0 =⇒ gcd(3, 1) = gcd(1, 0) = 1.

Therefore,
gcd(74, 35) = 1.

[7] 2. One of the following statements is true and one is false. Prove the true statement
by contradiction. Give a counterexample for the false statement.

(a) For all sets A and B, if 3 6∈ A then 3 6∈ A ∪B.

This statement is false. Here is a counter-example: let A = ∅ and let B = {3}. Note
that A ∪B = {3}. Then 3 6∈ A and 3 ∈ A ∪B.

(b) For all sets A and B, if 3 6∈ A then 3 6∈ A ∩B.

This statement is true.
Proof: Suppose (for a contradiction) that the negation is true; in other words, suppose

there exist sets A and B such that 3 6∈ A and 3 ∈ A ∩ B. Since 3 ∈ A ∩B it follows from
the definition of set intersection that 3 ∈ A and 3 ∈ B. Since this contradicts 3 6∈ A, it
follows that the negation is false. QED

Another (slightly different) proof starts off directly. Let A and B be sets so that 3 6∈ A.
We want to prove that 3 6∈ A ∩ B. Suppose (for a contradiction) that 3 ∈ A ∩ B. This
means that 3 ∈ A and 3 ∈ B. But 3 ∈ A contradicts 3 6∈ A. Thus 3 6∈ A ∩B. Done.
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[11] 3. Let S be the statement: for all integers a, if 6 | a then 6 | (3a− 12).

(a) Prove directly from the definition of divisibility that S is true.

Let a be an arbitrary (but fixed) integer. Suppose 6 | a. Then a = 6k for some k ∈ Z.
Thus, 3a − 12 = 18k − 12 = 6(3k − 2). Since 3k − 2 is an integer, it follows from
3a− 12 = 6(3k − 2) that 6 | (3a− 12). QED

(b) Write out the converse of statement S, and give a proof or disproof.

The converse of statement S is the following: For all integers a, if 6 | (3a − 12) then
6 | a.

Proof: This statement is false, and here is a counterexample. Let a = 2. Then 3a−12 =
6− 12 = −6, and so 6 | (3a− 12). However 6 6 | 2, so 6 6 | a, so the converse of S is false.

(c) Write out the contrapositive of statement S, and give a proof or disproof.

The contrapositive of statement S is the following: For all integers a, if 6 6 | (3a− 12)
then 6 6 | a. This is true since it is logically equivalent to statement S, which is true (see
(a) above).
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[6] 4. In this problem, you may assume that every integer is either even or odd but not
both.

(a) Prove or disprove the statement:

“For all integers a, either a + 4 is odd or 4a + 1 is even.”

The statement is false. To see this, prove the negation: “There is some integer a so
that a + 4 is even and 4a + 1 is odd.”

Proof: Let a = 0. Then a + 4 = 4 is even and 4a + 1 = 1 is odd. QED

(b) Write out the negation of the statement in (a). Is it true or false?

The negation of “For all integers a, either a + 4 is odd or 4a + 1 is even” is “There is
some integer a so that a + 4 is even and 4a + 1 is odd”. The negation is true, as shown in
part (a) above.
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[5] 5. Prove or disprove the following two statements:

(a) ∀ sets A ∃ a set B so that A−B = ∅.

The statement is true.
Proof: Let A be an arbitrary (but fixed) set. Define B := A. Then A−B = A−A = ∅.

QED

(b) ∀ sets A ∃ a set B so that A− {1} = B − {2}.

The statement is false. To see this, prove the negation: “There is a set A such that for
every set B, A− {1} 6= B − {2}.

Proof: Let A = {2}. Then A − {1} = {2}. Thus, 2 ∈ A − {1}. For every set B,
2 6∈ B − {2}, by the definition of set difference. Thus, 2 ∈ A− {1} and 2 6∈ B − {2}, from
which it follows immediately that A− {1} 6= B − {2}. QED
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[7] 6. The sequence a1, a2, a3, . . . is defined by: a1 = 1, a2 = 2, and an = 2an−1 + 5an−2 for
all integers n ≥ 3. Prove using strong mathematical induction that an ≥ 3n−1 for all
integers n ≥ 3.

Let P (n) be the predicate: an ≥ 3n−1. We will prove:

∀n ∈ Z, n ≥ 3 implies P (n).

I. Base Case:

(i) Suppose n = 3. Then an = a3 = 2a2 + 5a1 = 2 · 2 + 5 · 1 = 9. On the other hand
3n−1 = 33−1 = 32 = 9. Since 9 ≥ 9, it follows that an ≥ 3n−1 when n = 3. Thus,
P (3) is true.

(ii) Suppose n = 4. Then an = a4 = 2a3 + 5a2 = 2 · 9 + 5 · 2 = 28. On the other hand
3n−1 = 34−1 = 33 = 27. Since 28 ≥ 27, it follows that an ≥ 3n−1 when n = 4. Thus,
P (4) is true.

II. Inductive Step: Let k be an integer and k ≥ 5. Suppose, for all integers i, if
3 ≤ i ≤ k then P (i) is true. (This is the inductive hypothesis.) We will show that
P (k + 1) is true.

ak+1 = 2ak + 5ak−1, by definition above

≥ 2(3k−1) + 5(3k−2), using P (k) and P (k − 1)

= 2(3k−1) + (3 + 2)(3k−2)

= 2 · 3k−1 + 3 · 3k−2 + 2 · 3k−2

= 2 · 3k−1 + 3k−1 + 2 · 3k−2

= 3 · 3k−1 + 2 · 3k−2

= 3k + 2 · 3k−2.

Since 3k−2 > 0, therefore

3k + 2 · 3k−2 > 3k.

Therefore
ak+1 ≥ 3k;

in other words, P (k + 1) is true.
By the Principle of Strong Mathematical Induction, it follows that an ≥ 3n−1 for all

integers n ≥ 3.

[40]


