SHOW ALL WORK. Marks for each problem are to the left of the problem number. NO CALCULATORS PLEASE.
[4] 1. Use the Euclidean algorithm to find $\operatorname{gcd}(74,35)$.
Recall from lecture: if a and b are positive integers, then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)
$$

By repeated application of this principle, we have the following:

$$
\begin{aligned}
& 74=2 \cdot 35+4 \quad \Longrightarrow \quad 74 \bmod 35=4 \quad \Longrightarrow \quad \operatorname{gcd}(74,35)=\operatorname{gcd}(35,4) \\
& 35=8 \cdot 4+3 \quad \Longrightarrow \quad 35 \bmod 4=3 \quad \Longrightarrow \quad \operatorname{gcd}(35,4)=\operatorname{gcd}(4,3) \\
& 4=1 \cdot 3+1 \quad \Longrightarrow \quad 4 \bmod 3=1 \quad \Longrightarrow \quad \operatorname{cd}(4,3)=\operatorname{gcd}(3,1) \\
& 3=3 \cdot 1+0 \quad \Longrightarrow \quad 3 \bmod 1=0 \quad \Longrightarrow \quad \operatorname{gcd}(3,1)=\operatorname{gcd}(1,0)=1 \text {. }
\end{aligned}
$$

Therefore,

$$
\operatorname{gcd}(74,35)=1
$$

[7] 2. One of the following statements is true and one is false. Prove the true statement by contradiction. Give a counterexample for the false statement.
(a) For all sets A and B, if $3 \notin A$ then $3 \notin A \cup B$.

This statement is false. Here is a counter-example: let $A=\emptyset$ and let $B=\{3\}$. Note that $A \cup B=\{3\}$. Then $3 \notin A$ and $3 \in A \cup B$.
(b) For all sets A and B, if $3 \notin A$ then $3 \notin A \cap B$.

This statement is true.
Proof: Suppose (for a contradiction) that the negation is true; in other words, suppose there exist sets A and B such that $3 \notin A$ and $3 \in A \cap B$. Since $3 \in A \cap B$ it follows from the definition of set intersection that $3 \in A$ and $3 \in B$. Since this contradicts $3 \notin A$, it follows that the negation is false. QED

Another (slightly different) proof starts off directly. Let A and B be sets so that $3 \notin A$. We want to prove that $3 \notin A \cap B$. Suppose (for a contradiction) that $3 \in A \cap B$. This means that $3 \in A$ and $3 \in B$. But $3 \in A$ contradicts $3 \notin A$. Thus $3 \notin A \cap B$. Done.
[11] 3. Let \mathcal{S} be the statement: for all integers a, if $6 \mid a$ then $6 \mid(3 a-12)$.
(a) Prove directly from the definition of divisibility that \mathcal{S} is true.

Let a be an arbitrary (but fixed) integer. Suppose $6 \mid a$. Then $a=6 k$ for some $k \in \mathbb{Z}$. Thus, $3 a-12=18 k-12=6(3 k-2)$. Since $3 k-2$ is an integer, it follows from $3 a-12=6(3 k-2)$ that $6 \mid(3 a-12) . Q E D$
(b) Write out the converse of statement \mathcal{S}, and give a proof or disproof.

The converse of statement \mathcal{S} is the following: For all integers a, if $6 \mid(3 a-12)$ then $6 \mid a$.

Proof: This statement is false, and here is a counterexample. Let $a=2$. Then $3 a-12=$ $6-12=-6$, and so $6 \mid(3 a-12)$. However $6 \nmid 2$, so $6 \nmid$ a, so the converse of \mathcal{S} is false.
(c) Write out the contrapositive of statement \mathcal{S}, and give a proof or disproof.

The contrapositive of statement \mathcal{S} is the following: For all integers a, if $6 \times(3 a-12)$ then $6 \times$. This is true since it is logically equivalent to statement \mathcal{S}, which is true (see (a) above).
[6] 4. In this problem, you may assume that every integer is either even or odd but not both.
(a) Prove or disprove the statement:
"For all integers a, either $a+4$ is odd or $4 a+1$ is even."

The statement is false. To see this, prove the negation: "There is some integer a so that $a+4$ is even and $4 a+1$ is odd."

Proof: Let $a=0$. Then $a+4=4$ is even and $4 a+1=1$ is odd. QED
(b) Write out the negation of the statement in (a). Is it true or false?

The negation of "For all integers a, either $a+4$ is odd or $4 a+1$ is even" is"There is some integer a so that $a+4$ is even and $4 a+1$ is odd". The negation is true, as shown in part (a) above.
[5] 5. Prove or disprove the following two statements:
(a) \forall sets $A \exists$ a set B so that $A-B=\emptyset$.

The statement is true.
Proof: Let A be an arbitrary (but fixed) set. Define $B:=A$. Then $A-B=A-A=\emptyset$. $Q E D$
(b) \forall sets $A \exists$ a set B so that $A-\{1\}=B-\{2\}$.

The statement is false. To see this, prove the negation: "There is a set A such that for every set $B, A-\{1\} \neq B-\{2\}$.

Proof: Let $A=\{2\}$. Then $A-\{1\}=\{2\}$. Thus, $2 \in A-\{1\}$. For every set B, $2 \notin B-\{2\}$, by the definition of set difference. Thus, $2 \in A-\{1\}$ and $2 \notin B-\{2\}$, from which it follows immediately that $A-\{1\} \neq B-\{2\}$. QED
[7] 6. The sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by: $a_{1}=1, a_{2}=2$, and $a_{n}=2 a_{n-1}+5 a_{n-2}$ for all integers $n \geq 3$. Prove using strong mathematical induction that $a_{n} \geq 3^{n-1}$ for all integers $n \geq 3$.

Let $P(n)$ be the predicate: $a_{n} \geq 3^{n-1}$. We will prove:

$$
\forall n \in \mathbb{Z}, \quad n \geq 3 \text { implies } P(n)
$$

I. Base Case:

(i) Suppose $n=3$. Then $a_{n}=a_{3}=2 a_{2}+5 a_{1}=2 \cdot 2+5 \cdot 1=9$. On the other hand $3^{n-1}=3^{3-1}=3^{2}=9$. Since $9 \geq 9$, it follows that $a_{n} \geq 3^{n-1}$ when $n=3$. Thus, $P(3)$ is true.
(ii) Suppose $n=4$. Then $a_{n}=a_{4}=2 a_{3}+5 a_{2}=2 \cdot 9+5 \cdot 2=28$. On the other hand $3^{n-1}=3^{4-1}=3^{3}=27$. Since $28 \geq 27$, it follows that $a_{n} \geq 3^{n-1}$ when $n=4$. Thus, $P(4)$ is true.
II. Inductive Step: Let k be an integer and $k \geq 5$. Suppose, for all integers i, if $3 \leq i \leq k$ then $P(i)$ is true. (This is the inductive hypothesis.) We will show that $P(k+1)$ is true.

$$
\begin{aligned}
a_{k+1} & =2 a_{k}+5 a_{k-1}, \quad \text { by definition above } \\
& \geq 2\left(3^{k-1}\right)+5\left(3^{k-2}\right), \quad \text { using } P(k) \text { and } P(k-1) \\
& =2\left(3^{k-1}\right)+(3+2)\left(3^{k-2}\right) \\
& =2 \cdot 3^{k-1}+3 \cdot 3^{k-2}+2 \cdot 3^{k-2} \\
& =2 \cdot 3^{k-1}+3^{k-1}+2 \cdot 3^{k-2} \\
& =3 \cdot 3^{k-1}+2 \cdot 3^{k-2} \\
& =3^{k}+2 \cdot 3^{k-2} .
\end{aligned}
$$

Since $3^{k-2}>0$, therefore

$$
3^{k}+2 \cdot 3^{k-2}>3^{k}
$$

Therefore

$$
a_{k+1} \geq 3^{k} ;
$$

in other words, $P(k+1)$ is true.
By the Principle of Strong Mathematical Induction, it follows that $a_{n} \geq 3^{n-1}$ for all integers $n \geq 3$.

