

Faculty of Science Department of Mathematics & Statistics

Quiz #4 - MATH 271 - L01 Thursday April 2, 2009

Your family name:		_						
Your first name:	·	_						
Your signature:	·	_						
Your student number	•							

INSTRUCTIONS:

- I. Fill out the above information BEFORE starting.
- II. Show all your work, use the back of the previous page for rough work and clearly insert your solution in the space provided space.
- III. Calculators are not allowed, and no other material.
- IV. There are 2 questions and 3 pages to this exam.
- V. Time allowed is 50 minutes.

1	I					I
	l					I
	l					I
1	l .					
I MAADIZC.	L <i>1</i> 1.1.	/⊏		/5	Πομα1.	/10
I MARNS:	I 77 1.	7 (1)	<i>==Z:</i>	70	i iolal:	/ 10 1
111111111111111111111111111111111111111	11	, ,	11 -	7 -	10001.	/ ~ 0
						<u> </u>

Question 1 (5 points) Let $S = \{1, 2, 3, 4\}$ and $\mathcal{P}(S)$ the power set of S. A binary relation R on $\mathcal{P}(S)$ is defined as follows:

For
$$X, Y \in \mathcal{P}(S)$$
, $XRY \leftrightarrow N(X \cup Y)$ is odd.

[1] a: With justification, determine whether the relation R is reflexive.

[2] b: With justification, determine whether the relation R is symmetric.

[2] \mathbf{c} : With justification, determine whether the relation R is transitive.

Question 2 (5 points) Let $f: X \to Y$ be a function. Define a binary relation on X by: $x_1Rx_2 \leftrightarrow f(x_1) = f(x_2)$.

[3] a: With justification, show that R is an equivalence relation on X.

[2] b: Describe the equivalence classes when f is one-to-one.

Faculty of Science
Department of Mathematics & Statistics

Quiz #4 - MATH 271 - L02 Thursday April 2, 2009

Your family name:	 <u>.</u>	<u>.</u>	
Your first name:			
Your signature:			
Your student number:			

INSTRUCTIONS:

- I. Fill out the above information BEFORE starting.
- II. Show all your work, use the back of the previous page for rough work and clearly insert your solution in the space provided space.
- III. Calculators are not allowed, and no other material.
- IV. There are 2 questions and 3 pages to this exam.
- V. Time allowed is 50 minutes.

	1					
I	1					
l .						
I MADIZO.	11.1.	/5	11.9.	/¤	$T_{\alpha+\alpha}$ 1.	/10
IWANNO.	. ∓±.	/0	#Z:	70	Total.	/ 10
	. 17	- /	11			/

Question 1 (5 points) Let $S = \{1, 2, 3, 4\}$ and $\mathcal{P}(S)$ the power set of S. A binary relation R on $\mathcal{P}(S)$ is defined as follows:

For
$$X, Y \in \mathcal{P}(S)$$
, $XRY \leftrightarrow N(X \cap Y)$ is even.

[1] a: With justification, determine whether the relation R is reflexive.

[2] b: With justification, determine whether the relation R is symmetric.

[2] c: With justification, determine whether the relation R is transitive.

No. For exam,

Let
$$X = 2i3$$
 $Y = \frac{3}{2}$ $Z = \frac{3}{3}$?

Let $X = 2i3$ $Y = \frac{3}{2}$ $Z = \frac{3}{3}$ $Z = \frac{3}{3}$

Let $X = \frac{3}{3}$ $Y = \frac{3}{3}$ $Z = \frac{$

Question 2 (5 points) Let R be an equivalence relation on a set A.

[1] **a:** For $a \in A$, define what is the equivalence class [a].

[4] **b:** For $a, b \in A$, prove that $[a] \cap [b] \neq \emptyset$ implies that [a] = [b]. Let exe TaInTbJ. lee prove TaJ=757 So alx n bRx. or ZaJ C C 6J Lot y ∈ ToJ; e aky al branakanaks (symnethy (wind techinout) 1. b Ry y c 767 TW STa) Lot be Tb) is bRY A. aRxnaRbabres (symnets) a Ry (transtuttain) = ye tal