Faculty of Science
Department of Mathematics \& Statistics
Homework \#1-MATH 271 - L01 \& L02

SOLUTIONS

Follow instructions available in the Assignment Policy document!

Question 1 (10 points) For each true statement below, give a proof. For each false statement below, write out its negation, then give a proof of the negation.
a: $([2$ marks $])\left(\forall x, y \in \mathbb{R}^{+}\right)\lfloor x y\rfloor=\lfloor x\rfloor\lfloor y\rfloor$
b: $([2$ marks $])\left(\forall x, y \in \mathbb{R}^{+}\right)$if $y \geq 1$ then $\left\lfloor\frac{x}{y}\right\rfloor=\left\lfloor\left\lfloor\frac{\lfloor x}{\lfloor y\rfloor}\right\rfloor\right.$
c: $([3$ marks $])\left(\forall x, y \in \mathbb{R}^{+}\right)$if $y \geq 1$ then $\left\lfloor\frac{x}{y}\right\rfloor=\left\lfloor\left\lfloor\frac{\lfloor x\rfloor}{\lfloor y\rfloor}\right\rfloor\right.$
d: $([3$ marks $])(\forall n \in \mathbb{Z})\left\lceil\frac{n^{2}}{4}\right\rceil=\left\lceil\frac{n^{2}+3}{4}\right\rceil$ if and only if n is odd.

Solution:

a: This statement is false. The negation of the statement is:

$$
\left(\exists x, y \in \mathbb{R}^{+}\right)\lfloor x y\rfloor \neq\lfloor x\rfloor\lfloor y\rfloor
$$

An example which proves the negation is $x=y=3 / 2$, because in this case

$$
\lfloor x y\rfloor=\lfloor 9 / 4\rfloor=2 \text {, and }\lfloor x\rfloor\lfloor y\rfloor=\lfloor 3 / 2\rfloor\lfloor 3 / 2\rfloor=1 \text {. }
$$

b: This statement is false. The negation of the statement is:

$$
\left(\exists x, y \in \mathbb{R}^{+}\right) y \geq 1 \text { and }\left\lfloor\frac{x}{y}\right\rfloor \neq\left\lfloor\frac{x}{y}\right\rfloor=\left\lfloor\frac{\lfloor x\rfloor}{\lfloor y\rfloor}\right\rfloor
$$

An example which proves the negation is $x=5 / 2$ and $y=3 / 2$, because in this case

$$
\left\lfloor\frac{x}{y}\right\rfloor=\lfloor 5 / 3\rfloor=1, \text { and }\left\lfloor\frac{\lfloor x\rfloor}{\lfloor y\rfloor}\right\rfloor=\left\lfloor\frac{2}{1}\right\rfloor=2 \text {. }
$$

c: This statement is true. We prove it directly as follows:
Let $x \in \mathbb{R}$ and $n \in \mathbb{N}$ such that $x-\lfloor x\rfloor<\frac{1}{n}$, we need to prove that $\lfloor n x\rfloor=n\lfloor x\rfloor$.
But by multiplying by n we have: $n x-n\lfloor x\rfloor<n \cdot \frac{1}{n}=1$,
so $n x<n\lfloor x\rfloor+1$.
We always have $n\lfloor x\rfloor \leq n x$, so together yields $n\lfloor x\rfloor \leq n x<n\lfloor x\rfloor+1$ and therefore $\lfloor n x\rfloor=n\lfloor x\rfloor$ by definition.
d: This statement is true. Let $n \in \mathbb{Z}$, we need to prove implications in both directions.
I. Assume first that n is odd. We need to show that $\left\lceil\frac{n^{2}}{4}\right\rceil=\left\lceil\frac{n^{2}+3}{4}\right\rceil$.

Since n is odd, $n=2 k+1$ for some $k \in \mathbb{Z}$.
Therefore $\frac{n^{2}+3}{4}=\frac{(2 k+1)^{2}+3}{4}=\frac{4 k^{2}+4 k+4}{4}=k^{2}+k+1 \in \mathbb{Z}$, and thus $\left\lceil\frac{n^{2}+3}{4}\right\rceil=k^{2}+k+1$.
On the other hand $\frac{n^{2}}{4}=\frac{4 k^{2}+4 k+1}{4}=k^{2}+k+\frac{1}{4}$.
Thus $k^{2}+k<\frac{n^{2}+3}{4} \leq k^{2}+k+1$, meaning $\left\lceil\frac{n^{2}}{4}\right\rceil=k^{2}+k+1$ by definition.
Hence $\left\lceil\frac{n^{2}}{4}\right\rceil=\left\lceil\frac{n^{2}+3}{4}\right\rceil$ as desired.
II. Now assume that $\left\lceil\frac{n^{2}}{4}\right\rceil=\left\lceil\frac{n^{2}+3}{4}\right\rceil$, we need to prove that n is odd.

We do so by proving the contrapositive, that is assuming that n is even, we show that $\left\lceil\frac{n^{2}}{4}\right\rceil \neq \frac{n^{2}+3}{4}$.
Since n is even, $n=2 k$ for some $k \in \mathbb{Z}$.
Therefore $\frac{n^{2}+3}{4}=\frac{(2 k)^{2}+3}{4}=\frac{4 k^{2}+3}{4}=k^{2}+\frac{3}{4}$.
We get $k^{2}<\frac{n^{2}+3}{4} \leq k^{2}+1$,
and thus $\left\lceil\frac{n^{2}+3}{4}\right\rceil=k^{2}+1$ by definition.
On the other hand $\frac{n^{2}}{4}=\frac{4 k^{2}}{4}=k^{2} \in \mathbb{Z}$.
Thus $\left\lceil\frac{n^{2}}{4}\right\rceil=k^{2}$ by definition.
Hence $\left\lceil\frac{n^{2}}{4}\right\rceil \neq\left\lceil\frac{n^{2}+3}{4}\right\rceil$ as desired.

Question 2 For each true statement below, give a proof. For each false statement below, write out its negation, then give a proof of the negation.
a: The product of irrational numbers is irrational.
b: $\sqrt{6}$ is irrational.

Solution:

a: This statement is false. The negation of the statement is:
There are two irrational numbers whose product is rational.

Two such numbers are $\sqrt{2}$ and $\sqrt{2}$. Indeed by Theorem 3.7.1, $\sqrt{2}$ is irrational, however the product

$$
\sqrt{2} \sqrt{2}=2 \text { is rational. }
$$

b: The statement is true, and we prove it by contradiction supposing the statement is false.

That means the negation of the statement is true, that $\sqrt{6}$ is rational. There then are integers m and n with no common factors such that

$$
\sqrt{6}=\frac{m}{n}
$$

Squaring both sides we obtain

$$
6=\frac{m^{2}}{n^{2}}
$$

or equivalently

$$
\begin{equation*}
m^{2}=6 n^{2} \tag{1}
\end{equation*}
$$

This means that m^{2} is divisible by 6 , and we therefore claim that m itself is divisible by 6 .
Indeed otherwise, by the Quotient Remainder Theorem, m must have the form $6 k+i$ for some integer $0<i<6$. But then $m^{2}=(6 k+i)^{2}=36 k^{2}+12 k i+i^{2}=6\left(6 k^{2}+2 k i\right)+i^{2}$. However i^{2} is not divisible by 6 for any integer $0<i<6$, so m^{2} would not be divisible by 6 .

We must thus have $m=6 k$ for some $k \in \mathbb{Z}$. Replacing in equation 1 , we get

$$
(6 k)^{2}=6 n^{2}
$$

and by simplifying

$$
\begin{equation*}
6 k^{2}=n^{2} \tag{2}
\end{equation*}
$$

As above, n^{2} must be divisible by 6 and again we conclude that n it self is divisible by 6. But this now means that 6 is a a common factor to both m and n, contrary to our assumptions.

Question 3 For each true statement below, give a proof. For each false statement below, write out its negation, then give a proof of the negation.
a: $(\forall a, b \in \mathbb{Z})(a \neq 0 \vee b \neq 0)$ implies $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, a-b)$.
b: $(\forall a, b \in \mathbb{Z})(a \neq 0 \vee b \neq 0)$ implies $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+b, a-b)$.

Solution:

a: This statement is true. For a proof, let $a, b \in \mathbb{Z}$, not both zero. We show that $\operatorname{gcd}(a, b) \leq \operatorname{gcd}(a, a-b)$ and $\operatorname{gcd}(a, a-b) \leq \operatorname{gcd}(a, b)$.
I. $\operatorname{gcd}(a, b) \leq \operatorname{gcd}(a, a-b)$.

If d is any divisor if a and b, then $a=d k$ and $b=d \ell$ for some $k, \ell \in \mathbb{Z}$.
But by substitution $a-b=d k-d \ell=d(k-\ell)$ showing that d divides both a and $a-b$. Since $\operatorname{gcd}(a, a-b)$ is the largest divisor of a and $a-b$, we must have $d \leq \operatorname{gcd}(a, a-b)$.
Finally since $\operatorname{gcd}(a, b)$ is such a divisor of a and b, we have $\operatorname{gcd}(a, b) \leq \operatorname{gcd}(a, a-b)$.
II. $\operatorname{gcd}(a, a-b) \leq \operatorname{gcd}(a, b)$.

If d is any divisor if a and $a-b$, then $a=d k$ and $a-b=d \ell$ for some $k, \ell \in \mathbb{Z}$.
But by substitution $b=a-(a-b)=d k-d \ell=d(k-\ell)$ showing that d divides both a and b.
Since $\operatorname{gcd}(a, b)$ is the largest divisor of a and b, we must have $d \leq \operatorname{gcd}(a, b)$.
Finally since $\operatorname{gcd}(a, a-b)$ is such a divisor of a and $a-b$, we have $\operatorname{gcd}(a, a-b) \leq \operatorname{gcd}(a, b)$.
b: This statement is false. The negation of the statement is:

$$
(\exists a, b \in \mathbb{Z})(a \neq 0 \vee b \neq 0) \text { and } \operatorname{gcd}(a, b) \neq \operatorname{gcd}(a+b, a-b)
$$

Let $a=b=1 \in \mathbb{Z}$. Then certainly $a \neq 0$ or $b \neq 0$ (in fact neither is), and $\operatorname{gcd}(a, b)=1$ while $\operatorname{gcd}(a+b, a-b)=\operatorname{gcd}(2,0)=2$.

