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Question 1 (10 points) For each true statement below, give a proof. For each false
statement below, write out its negation, then give a proof of the negation.

a: ([2 marks]) (∀x, y ∈ R+) bxyc = bxcbyc

b: ([2 marks]) (∀x, y ∈ R+) if y ≥ 1 then bx
y
c = b bxcbycc

c: ([3 marks]) (∀x, y ∈ R+) if y ≥ 1 then
⌊

x
y

⌋
=
⌊
bxc
byc

⌋
d: ([3 marks]) (∀n ∈ Z) dn2

4
e = dn2+3

4
e if and only if n is odd.

Solution:

a: This statement is false. The negation of the statement is:

(∃x, y ∈ R+) bxyc 6= bxcbyc

An example which proves the negation is x = y = 3/2, because in this case

bxyc = b9/4c = 2, and bxcbyc = b3/2cb3/2c = 1.

b: This statement is false. The negation of the statement is:

(∃x, y ∈ R+) y ≥ 1 and bx
y
c 6=

⌊
x

y

⌋
=

⌊
bxc
byc

⌋
An example which proves the negation is x = 5/2 and y = 3/2, because in this case⌊

x

y

⌋
= b5/3c = 1, and

⌊
bxc
byc

⌋
=

⌊
2

1

⌋
= 2.



c: This statement is true. We prove it directly as follows:

Let x ∈ R and n ∈ N such that x− bxc < 1
n
, we need to prove that bnxc = nbxc.

But by multiplying by n we have: nx− nbxc < n · 1
n

= 1,
so nx < nbxc+ 1.
We always have nbxc ≤ nx, so together yields
nbxc ≤ nx < nbxc+ 1
and therefore bnxc = nbxc by definition.

d: This statement is true. Let n ∈ Z, we need to prove implications in both directions.

I. Assume first that n is odd. We need to show that dn2

4
e = dn2+3

4
e.

Since n is odd, n = 2k + 1 for some k ∈ Z.

Therefore n2+3
4

= (2k+1)2+3
4

= 4k2+4k+4
4

= k2 + k + 1 ∈ Z,

and thus dn2+3
4
e = k2 + k + 1.

On the other hand n2

4
= 4k2+4k+1

4
= k2 + k + 1

4
.

Thus k2 + k < n2+3
4
≤ k2 + k + 1,

meaning dn2

4
e = k2 + k + 1 by definition.

Hence dn2

4
e = dn2+3

4
e as desired.

II. Now assume that dn2

4
e = dn2+3

4
e, we need to prove that n is odd.

We do so by proving the contrapositive, that is assuming that n is even, we show that
dn2

4
e 6= n2+3

4
.

Since n is even, n = 2k for some k ∈ Z.

Therefore n2+3
4

= (2k)2+3
4

= 4k2+3
4

= k2 + 3
4
.

We get k2 < n2+3
4
≤ k2 + 1,

and thus dn2+3
4
e = k2 + 1 by definition.

On the other hand n2

4
= 4k2

4
= k2 ∈ Z.

Thus dn2

4
e = k2 by definition.

Hence dn2

4
e 6= dn2+3

4
e as desired.

Question 2 For each true statement below, give a proof. For each false statement below,
write out its negation, then give a proof of the negation.

a: The product of irrational numbers is irrational.

b:
√

6 is irrational.

Solution:

a: This statement is false. The negation of the statement is:

There are two irrational numbers whose product is rational.



Two such numbers are
√

2 and
√

2. Indeed by Theorem 3.7.1,
√

2 is irrational, however
the product √

2
√

2 = 2 is rational.

b: The statement is true, and we prove it by contradiction supposing the statement is false.

That means the negation of the statement is true, that
√

6 is rational. There then are
integers m and n with no common factors such that

√
6 =

m

n

Squaring both sides we obtain

6 =
m2

n2
,

or equivalently
m2 = 6n2. (1)

This means that m2 is divisible by 6, and we therefore claim that m itself is divisible
by 6.
Indeed otherwise, by the Quotient Remainder Theorem, m must have the form 6k+i for
some integer 0 < i < 6. But then m2 = (6k + i)2 = 36k2 +12ki+ i2 = 6(6k2 +2ki)+ i2.
However i2 is not divisible by 6 for any integer 0 < i < 6, so m2 would not be divisible
by 6.

We must thus have m = 6k for some k ∈ Z. Replacing in equation 1, we get

(6k)2 = 6n2

and by simplifying
6k2 = n2. (2)

As above, n2 must be divisible by 6 and again we conclude that n it self is divisible by
6. But this now means that 6 is a a common factor to both m and n, contrary to our
assumptions.

Question 3 For each true statement below, give a proof. For each false statement below,
write out its negation, then give a proof of the negation.

a: (∀a, b ∈ Z)(a 6= 0 ∨ b 6= 0) implies gcd(a, b) = gcd(a, a− b).

b: (∀a, b ∈ Z)(a 6= 0 ∨ b 6= 0) implies gcd(a, b) = gcd(a + b, a− b).

Solution:



a: This statement is true. For a proof, let a, b ∈ Z, not both zero. We show that
gcd(a, b) ≤ gcd(a, a− b) and gcd(a, a− b) ≤ gcd(a, b).

I. gcd(a, b) ≤ gcd(a, a− b).
If d is any divisor if a and b, then a = dk and b = d` for some k, ` ∈ Z.
But by substitution a− b = dk−d` = d(k− `) showing that d divides both a and a− b.
Since gcd(a, a− b) is the largest divisor of a and a− b, we must have d ≤ gcd(a, a− b).
Finally since gcd(a, b) is such a divisor of a and b, we have gcd(a, b) ≤ gcd(a, a− b).

II. gcd(a, a− b) ≤ gcd(a, b).
If d is any divisor if a and a− b, then a = dk and a− b = d` for some k, ` ∈ Z.
But by substitution b = a− (a− b) = dk − d` = d(k − `) showing that d divides both
a and b.
Since gcd(a, b) is the largest divisor of a and b, we must have d ≤ gcd(a, b).
Finally since gcd(a, a−b) is such a divisor of a and a−b, we have gcd(a, a−b) ≤ gcd(a, b).

b: This statement is false. The negation of the statement is:

(∃a, b ∈ Z)(a 6= 0 ∨ b 6= 0) and gcd(a, b) 6= gcd(a + b, a− b).

Let a = b = 1 ∈ Z. Then certainly a 6= 0 or b 6= 0 (in fact neither is), and gcd(a, b) = 1
while gcd(a + b, a− b) = gcd(2, 0) = 2.


