Faculty of Science
Department of Mathematics \& Statistics

Homework \#1 - MATH 271 - L01 \& L02

Follow instructions available in the Assignment Policy document!

Question 1 For each true statement below, give a proof. For each false statement below, write out its negation, then give a proof of the negation.
a: $\left(\forall x, y \in \mathbb{R}^{+}\right)\lfloor x y\rfloor=\lfloor x\rfloor\lfloor y\rfloor$
b: $\left(\forall x, y \in \mathbb{R}^{+}\right)$if $y \geq 1$ then $\left\lfloor\frac{x}{y}\right\rfloor=\lfloor\lfloor x\rfloor\lfloor\lfloor \rfloor\rfloor$
c: $(\forall x \in \mathbb{R})(\forall n \in \mathbb{N})$ if $x-\lfloor x\rfloor<\frac{1}{n}$ then $\lfloor n x\rfloor=n\lfloor x\rfloor$
$\mathrm{d}:(\forall n \in \mathbb{Z})\left\lceil\frac{n^{2}}{4}\right\rceil=\left\lceil\frac{n^{2}+3}{4}\right\rceil$ if and only if n is odd.
Question 2 For each true statement below, give a proof. For each false statement below, write out its negation, then give a proof of the negation.
a: The product of irrational numbers is irrational.
b: $\sqrt{6}$ is irrational.
Question 3 For each true statement below, give a proof. For each false statement below, write out its negation, then give a proof of the negation.
a: $(\forall a, b \in \mathbb{Z})(a \neq 0 \vee b \neq 0)$ implies $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, a-b)$.
b: $(\forall a, b \in \mathbb{Z})(a \neq 0 \vee b \neq 0)$ implies $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+b, a-b)$.

