Faculty of Science
Department of Mathematics \& Statistics

Homework \#2 - MATH 271 - L01 \& L02

Follow instructions available in the Assignment Policy document!

Question 1 Write a detailed but pseudo-algorithm (in the style of the text) which on input of two sets A and B computes their intersection $A \cap B$.

Question 2 For each true statement below, give a proof. For each false statement below, write out its negation, then give a proof of the negation.
Assume all sets are subsets of a universal set U.
a: For all sets A, B and $C, A-(B-C)=(A-B)-C$.
b: For all sets A, B and $C, A \times(B-C)=(A \times B)-(A \times C)$.
c: For all sets A, B, C and $D,(A-B) \times(C-D)=(A \times C)-(B \times D)$.
d: For all sets A, B and $C,(A-B) \cup(B-C)=(A \cup B)-(B \cap C)$.
Question 3 Assume that B is a Boolean algebra with operations + and \cdot
For each true statement below, give a detailed proof. For each false statement below, write out its negation, then give a proof of the negation.
In your arguments, you can use any part of the denition of a Boolean algebra and the properties listed in Theorem 5.3.2.
a: $(\forall a, b \in B)(a+b=1 \longleftrightarrow b \cdot \bar{a}=\bar{a})$.
b: $(\forall a, b \in B)(a \cdot b=0 \longleftrightarrow b+\bar{a}=\bar{a})$.
$\mathrm{c}:(\forall a, b, c \in B)(a+b=a+c \longrightarrow b=c)$.

