Faculty of Science
Department of Mathematics \& Statistics

Homework \#3 - MATH 271 - L01 \& L02

Follow instructions available in the Assignment Policy document!

Question 1

a: Prove in full detail that no function from a finite set X to a strictly larger finite set Y is onto.

Now for $k \in \mathbb{N}$, define a function $f: X \rightarrow Y$ to be " $k-t o-1$ " if $N\left(f^{-1}(y)\right) \leq k$ for each $y \in Y$.
b: Prove the Generalized pigeonhole principle, that is if $k \in \mathbb{N}, X$ and Y are finite sets such that $N(X)>k \cdot N(Y)$, then no function from X to Y is $k-t o-1$.
c: Given finite sets X and Y such that $N(X)>N(Y)$, describe explicitly how to compute the smallest $k \in \mathbb{N}$ such that no function from X to Y is $k-t o-1$, and prove that this is indeed the smallest such k.

Question 2 Argue the following by either providing a detailed proof or counterexample.
Consider two functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$ where X and Y are two finite sets, and assume further that

$$
g \circ f=1_{X}
$$

a: Does necessarily $f \circ g=1_{Y}$?
b: Is g necessarily one-one?
c: Is f necessarily one-one?
d: Is g necessarily onto?
e : Is f necessarily onto?

Question 3

a: Show that for any set A of six positive integers taken from $\{1,2, \ldots, 12\}, A$ must contain two disjoint subsets whose elements when added up give the same sum.
b: What about any set of five positive integers taken from $\{1,2, \ldots, 12\}$?

