

Faculty of Science Department of Mathematics & Statistics

Homework #4 - MATH 271 - L
01 & L02

Follow instructions available in the Assignment Policy document!

Question 1

- a: Let a, b and c be integers. Prove that if gcd(a,b) = 1, $a \mid c$ and $b \mid c$, then $ab \mid c$.
- b: Show that the assumption that gcd(a, b) = 1 in part (a) is necessary.

Question 2

a: Prove Theorem 10.4.3 part 4.

That is let a, b and n be integers with n > 1 and $a \equiv b \pmod{n}$. Prove by induction that $a^m \equiv b^m \pmod{n}$ for all integers $m \ge 1$.

(You may use the other parts of the Theorem in your proof).

b: Argue the following statement:

Let a, b, c, d and n be all non-negative integers with n > 1 and such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $a^c \equiv b^d \pmod{n}$.

Question 3

- a: With justification, find an inverse for 3276 modulo 3025.
- b: With justification, find an inverse for 3276 modulo 3026.
- c: You have intercepted the encrypted message C = 8 which you know has been encrypted using the RSA cipher using the public key pq = 1271 and e = 43. With justification, what is the message M?