University of Calgary Faculty of Science Department of Mathematics and Statistics Sheet 2

Math 311 Sheet 2 Fall 2007

- 1. Determine whether or not the following sets with the indicated operations are vector spaces or not. Justify your answer.
 - a. The set, V, of non-negative real numbers; with ordinary addition and scalar multiplication.
 - b. The set, V, of all 2x2 matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$; with the usual operations of addition and scalar multiplication as for the vector space M_{22} .
 - c. The set, V, of all 2x2 matrices which have determinant equal to zero; with the usual operations of addition and scalar multiplication as for the vector space M_{22} .
 - d. The set V of all 2x2 matrices with the addition of M_{22} but having scalar multiplication, *, defined by: for $a \in \mathbb{R}$, and $X \in V$, $a*X = aX^T$
 - e. Let V be a set which consists of the ordered triples (x, y, z) in \mathbb{R}^3 with addition defined as usual and with scalar multiplication defined as follows: If $a \in \mathbb{R}$, and $(x, y, z) \in \mathbb{R}^3$, then a(x, y, z) = (ax, 0, az)
 - f. Let V be the set of all ordered pairs, $\begin{pmatrix} x \\ y \end{pmatrix}$, in \mathbb{R}^2 with scalar multiplication defined as usual and addition defined as follows:

If
$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
, $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \in \mathbb{R}^2$, then $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 - 1 \\ y_1 + y_2 \end{pmatrix}$

2. Let V be the set of positive real numbers with vector addition being ordinary multiplication, and scalar multiplication being defined by $a v = v^a$. Show that V is a vector space.

University of Calgary Faculty of Science Department of Mathematics and Statistics

Sheet 2 Fall 2007

- 3. In each case show that the condition $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}$ in V implies that $a = b = c = \mathbf{0}$.
 - a. $V = \mathbb{R}^4$; $\mathbf{u} = (2,1,0,2)$, $\mathbf{v} = (1,1,-1,0)$, $\mathbf{w} = (0,1,2,1)$
 - b. $V = P_3$; $u = x^3 + x$, $v = x^2 + 1$, $w = x^3 x^2 + x + 1$
- 4. Let V be a vector space which contains the vectors v, v_1 , v_2 , ... v_n . Let a_1 , a_2 , ... a_n be real numbers. Use induction on n to prove that
 - a. $a(v_1 + v_2 + ... v_n) = av_1 + av_2 + ... + av_n$
 - b. $(a_1 + a_2 + ... a_n)v = a_1v + a_2v + ... + a_nv$
- 5. Let V be a vector space. If \mathbf{u} and \mathbf{v} are vectors in V, and if a and b are scalars, show that
 - a. If av = bv and $v \neq 0$, then a = b

Math 311

b. If au = av and $a \neq 0$, then u = v