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L Give an example of each of the following:
a. A subset of a vector space which is not a subspace of the vector space.
b. A subset of a vector space which is not linearly independent.
C. A subset of a vector space which is linearly independent.
d A mapping between two vector space which is a linear transformation and which
is one-to-one.
e A mapping between two vector spaces which is a linear transformation and which
is onto.
f. A subset of a vector space consisting of at least three vectors and which is an
orthogonal set.
g. A subset of a vector space consisting of at least three vectors and which is an
orthonormal set.
2. Give a definition for each of the following:
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A basis of a vector space.

Dimension of a vector space

A subspace of a vector space.

Rank of an mxn matrix A.

A linear tranformation, T, between the vector spaces U and V.
Ker T, where T is a linear transformation between vector spaces U and V.
Im T, where T is a linear transformation between vector spaces U and V.
A one-to-one linear transformation.

A linear transformation which is onto.

An isomorphism between two vector spaces U and V..

A linearly independent set of vectors.

A linearly dependent set of vectors.

An orthogonal set of vectors.

An orthonormal set of vectors.

An eigenvalue of an nxn matrix.

An eigenvector of an nxn matrix.

An orthogonal matrix.

A symmetric matrix.

A matrix A is similar to a matrix B.

An nxn matrix, A, is diagonalizable.

An nxn matrix, B, is orthogonally diagonalizable.
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3. T is a linear transformation between the vector spaces U and V.

a. Show that ker T = {0} if and only if T is one-to-one.

b. Show that Im T =V if and only if T is onto.

c. Show that if T is one-to-one then every set of linearly independent vectors in U is

mapped to a set of linearly independent vectors in V.

4. In each case, either prove the statement or give an example in which it is false.

Throughout, let T be a linear transformation between V and W where V and W are finite
dimensional vector spaces.

a.

If V=W,thenker Tc Im T.

If dim V =5, and dim W = 3, and dim(kerT) = 2, then T 1s onto.
I[fdimV =25, and dim W=4,then ker T # {0 }

If ker T = V, then W = { 0 }

If W={0},thenker T =7V.

IfW=V,and Im T < Ker T, then T~=~0.

If V has the basis { e;, e,, e, },andif T fe}) = 0 = T (e,), then
dim (im T) < 1.

If T is one-to-one, then dim V < dim W
If dim V < dim W,thenT is one-to-one.
If T is onto, then dim V > dim W.

If dim V > dim W,thenT is onto.

It dim (ker T) < dim W, then dim W » % o
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5, Find a linear transformation with the given properties:

a. T: #* - & suchthat T (1,2) = (1,0,1); T (-1,0) = (0,1,1). Find T (2,1).

b. T:P,~ P, suchthat T (x* =x* T(x +1) =0; Tx - 1) = x. Find
T (xz #4 1).
6. T : V - W is alinear transformation between vector spaces V and W. Show that

TWw-v)=TF -T) for al v,vyeV

7. T : V - W is alinear transformation between vector spaces " and . Show that
a. If U is a subspace of ¥, then T (U) = { TG;) uelU } 1s a subspace of W.

b. IfPis asubspace of W,then T7' (P ) ={veV:T(v)eP}isa

subspace of V.
8. Let T : %" - R" be a linear transformation with vectors written in rows.
a. Show that there exists an mxn matrix A such that

T(x)=x4 for all xec ®"

B If { e—l, . €, } is the standard basis for R™, show that the rows of 4 are

rla)r(a).1(a)

9. Let T : V - W be alinear transformation. Let v}y w. , v, € V.
To— n . - . ay— n - -
a. If { 4 ( v; ) }:' _, 8 linearly independent, show that { v, }r _, s linearly
independent.
b. Give an example to demonstrate that the converse of (a) is false.
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10. If T:V - Visalinear transformation (usually such a linear transformation is called a
linear operator) such that T’ (r(v))=v for all veV. If0+ v € V, show
that {v, T (v ) } is linearly independent if and only if T (v)#vand T (v) = -

11. Forany a € R, define the gvaluation map E, . P, ~ Rby
E, (px)) = pla) for px)€ P,

a. Show that E_ is a linear transformation which satisfies the property
E (x*)=(E @) fr ke{o12..)

b. It TP, = R is a linear transformation which satisfies
r(x¥)=(T®@), ke{01,2 ..} showthat T = E, forsome
ac N

12.  Find a basis of (1) Ker T, and (2) Im T in each case:

a. TP~ R?2 such that T(a + bx + ex?) = (a, b)

b. T: R+ R such that T(x,y ,2) = & +y 0,x +)
a b a+b b+c

C. T: M, M, such that T =
c d c+d d+a

ab
d. T:Mzz-—éﬁ such that T[ ]=a+d
c d

01
e. T:M,~ M, such that T(X) = X4 - AX where A =[1 0)
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linear transformations. Let 7 : ¥V - #2 be

I

a. Show that T is a linear tranformation.

let P: V- Rand O: V- RD
definedby T (v) =P (v ), O (v)

b. Show that ker T = Ker P ) Ker O

Use the Gram-Schmidt algorithm to convert the given basis of V into an orthogonal basis

of V.
1 1 1 l
a V=R, B=\)|-1{,]0],]|1
1 2
3
0 0 0
0 1 1 . )
b vV = R4, B = W [l | = ' is a basis for a subspace of R* and must
1 1 2

first be extended to a basis for R*

If U is a subspace of a vector space, R", show that
a. U+ is a subspace of R".
b. u+ = U.



