Department of Mathematics and Statistics University of Calgary Sheet 5

Math 311

- 1. U and V are vector spaces. $T: U \rightarrow V$ is a linear transformation, prove that Ker T is a subspace of U and Im T is a subspace of V.
- 2. $T: M_{22} \to \mathbb{R}^2$ is defined as follows: $T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+d \\ 2b \end{pmatrix}$.
 - a. Show that T is a linear transformation.
 - b. Determine Ker T and Im T.
 - c. Say whether or not T is one-to-one or onto.
- 3. U and V are vector spaces. $T: U \to V$ is a linear transformation. If $\{u_i\}_{i=1}^n$ is a set of vectors in U so that $\{T(u_i)\}_{i=1}^n$ is a linearly independent subset of V, show that $\{u_i\}_{i=1}^n$ is a linearly independent subset of U.
- 4. Give an example of a linear transformation T between the vector spaces U and V so that if $\{u_i\}_{i=1}^n$ are linearly independent in V then $\{T(u_i)\}_{i=1}^n$ is not a linearly independent set. [In other words, the converse of question 3 does not hold.].
- 5. $T: U \rightarrow V$ is a linear transformation between the vector spaces U and V. Prove that $Ker\ T = \{\mathbf{0}_U\}$ if and only if T is one-to-one.
- 6. Give an example of a linear transformation which is one-to-one and not onto. [Do not choose the trivial examples].
- 7. Give an example of a linear transformation which is onto but not one-to-one. [Do not choose the trivial examples].
- 8. V is a vector space. $T: V \to V$ is a linear transformation with the property that T(T(v)) = v, for each v in V. Show that $\{v, T(v)\}$ is linearly independent if and only if $T(v) \neq \pm v$.

Math 311

- 9. Given that U and V are vector spaces and that $T: U \to V$ Is a linear transformation, show that if T is onto and if $U = span \left\{ \left\{ u_i \right\}_{i=1}^n \right\}$, then $W = span \left\{ \left\{ T \left(u_i \right) \right\}_{i=1}^n \right\}$.
- 10. Let V be a vector space with vectors $\{v_i\}_{i=1}^n$. Define a mapping $T: \mathbb{R}^n \to V$ so

that
$$T \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \sum_{i=1}^n a_i v_i$$
.

- a. Show that T is linear.
- b. Show that T is 1-1 if and only if $\{v_i\}_{i=1}^n$ is linearly independent in V.
- c. Show that T is onto if and only if $V = span \left\{ \left\{ v_i \right\}_{i=1}^n \right\}$.
- 11. U V and W are vector spaces. $T: U \rightarrow V$ and $S: V \rightarrow W$ are linear transformations. Define a mapping $ST: U \rightarrow W$ as follows: ST(u) = S(T(u)).
 - a. Prove that ST is a linear transformation.
 - b. Prove that if ST is 1-1 then T is 1-1.
 - c. Prove that if ST is onto then S is onto.
 - d. Prove that if S and T are both 1-1 then ST is 1-1.
 - e. Prove that if S and T are both onto then ST is also onto.
- 12. T is a mapping between \mathbb{R}^4 and \mathbb{R}^3 defined as follows:

$$T\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x + 2y - z + w \\ 3x + y + 2w \\ x - 3y + 2w \end{pmatrix}.$$

- a. Determine the matrix A associated with this mapping and verify that T is a linear transformation.
- b. Determine the rank of the matrix A.
- c. Determine the kernel and image of the mapping T and their respective dimensions.