Spring 2009

- Find a basis for \mathbb{R}^3 which contains the vector $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. 1.
- 2. Let A be a 3x3 matrix with columns C_1 , C_2 , C_3 . None of the columns of A are zero.

Show that

a.
$$C_i C_i \neq 0$$
 $1 \leq i \leq 3$

b.
$$C_i^T C_j = C_j^T C_i$$
 $1 \le i, j \le 3$

$$1 \leq i,j \leq 3$$

c. If
$$C_1^T C_2 = C_2^T C_3 = C_3^T C_1 = 0$$
 then $\{C_1, C_2, C_3\}$ is a linearly independent set.

- U, V, and W are vector spaces. T and S are linear transformations between V and W, 3. and W and U respectively $[T: V \to W; S: W \to U]$. Show that $ker\ T \subseteq ker\ ST$.
- Definition: Let x and y be vectors in \mathbb{R}^n , x and y are orthogonal if and only if 4. $x \cdot y = 0$, Problem:

If x and y are vectors in \mathbb{R}^n , show that x and y are orthogonal if and only if ||x + y|| = ||x - y||.

- For what real values of x will the following set of vectors in \mathbb{R}^3 be linearly independent? 5. $B = \{(2x, -1, -1), (-1, 2x, -1), (-1, -1, 2x)\}$
- In the vector space \mathbb{R}^3 , extend the given set to a basis for \mathbb{R}^3 . 6. $B = \{ (-1, 2, 3), (1, -2, -2) \}$
 - Find a basis for \mathbb{R}^4 which contains the vectors b. $v = (1,-1,1,-1), \quad w = (0,1,0,1).$
- Consider the vector space M_{nn} . Let V be the set of all nxn matrices with the property 7. that $A^T = -A$. Determine whether or not V is a subspace of M_{nn} . Justify your answer.

8. Let A be the 4x5 matrix,
$$A = \begin{pmatrix} 1 & -1 & 5 & -2 & 2 \\ 2 & -2 & -2 & 5 & 1 \\ 0 & 0 & -12 & 9 & -3 \\ -1 & 1 & 7 & -7 & 1 \end{pmatrix}$$
 Determine bases for Row A, Col A, Null A. Determine the rank of A.

- 9. If U and V are subspaces of V and dim U = 2, show that either $U \subseteq W$ or $\dim (U \cap W) \le 1$.
- 10. Given that the set of vectors, $\{u, v, w\}$ are a basis for the vector space V, determine whether or not the given sets are bases for the vector space V. In each case justify your answer.

a.
$$\{u + v, v + w, w + u\}$$

b.
$$\{2u + v + 3w, 3u + v - w, u - 4w\}$$

- 11. Let $B = \{A_1, A_2, \dots A_n\} \subseteq M_{mn}$ and let $D = \{A_1^T, A_2^T, \dots A_n^T\} \subseteq M_{nm}$. Show that a. B is linearly independent if and only if D is linearly independent.
 - b. B spans M_{mn} if and only if D spans M_{nm} .